import folium import pandas as pd import requests from sklearn.cluster import KMeans # Given a dataframe of coordinates and centroids, cluster the coordinates, minimize the time difference, and return the routes def cluster_and_minimize(df, centroids, norm_centroids, end, time_diff): # Cluster the coordinates kmeans = KMeans(n_clusters=len(norm_centroids), init=norm_centroids) # Fit the coordinates to the clusters kmeans.fit(df['normalized_gps'].values.tolist()) # Add the cluster labels to the dataframe df['cluster'] = kmeans.labels_ # Create centroid strings centroid_1 = list_to_string([centroids[0]]) centroid_2 = list_to_string([centroids[1]]) # Return the list of locations in each cluster route_1 = df[df['cluster'] == 0] route_1_stops = len(route_1['gps'].values.tolist()) route_1_str = list_to_string(route_1['gps'].values.tolist()) route_2 = df[df['cluster'] == 1] route_2_stops = len(route_2['gps'].values.tolist()) route_2_str = list_to_string(route_2['gps'].values.tolist()) # Get the trip time for each route trip_hrs_1 = get_trip_time(route_1_str, route_1_stops, centroid_1, end) trip_hrs_2 = get_trip_time(route_2_str, route_2_stops, centroid_2, end) # if the absolute value of the difference in trip times is greater than the time difference, minimize the time difference if abs(trip_hrs_1 - trip_hrs_2) > time_diff: route_1_coordinates, route_2_coordinates = minimize_route_time_diff(route_1['gps'].values.tolist(), route_2['gps'].values.tolist(), centroid_1, centroid_2, end, time_diff) else: route_1_coordinates = route_1['gps'].values.tolist() route_2_coordinates = route_2['gps'].values.tolist() # Edit the dataframe to reflect the new coordinate clusters df.loc[df['gps'].astype(str).isin(map(str, route_1_coordinates)), 'cluster'] = 0 df.loc[df['gps'].astype(str).isin(map(str, route_2_coordinates)), 'cluster'] = 1 return df, route_1_coordinates, route_2_coordinates def minimize_route_time_diff(route_1_coordinates, route_2_coordinates, route_1_start, route_2_start, end, time_diff): """ Takes two routes and a time difference and returns a route that is the same length as the shorter route but has a time difference that is less than the time difference """ # Find the difference in time between the two routes route_1_time = get_trip_time(list_to_string(route_1_coordinates), len(route_1_coordinates), route_1_start, end) route_2_time = get_trip_time(list_to_string(route_2_coordinates), len(route_2_coordinates), route_2_start, end) route_time_diff = abs(route_1_time - route_2_time) # If the difference in time is greater than the time difference, move the closest coordinate from the longer route to the shorter route if route_time_diff > time_diff: # Find which route is longer if len(route_1_coordinates) > len(route_2_coordinates): longer_route = route_1_coordinates shorter_route = route_2_coordinates # Move the closest coordinate from the longer route to the shorter route closest_coordinate = move_coordinate(longer_route, shorter_route) longer_route.remove(closest_coordinate) shorter_route.append(closest_coordinate) # Recursively call the function return minimize_route_time_diff(longer_route, shorter_route, route_1_start, route_2_start, end, time_diff) else: longer_route = route_2_coordinates shorter_route = route_1_coordinates # Move the closest coordinate from the longer route to the shorter route closest_coordinate = move_coordinate(longer_route, shorter_route) longer_route.remove(closest_coordinate) shorter_route.append(closest_coordinate) # Recursively call the function return minimize_route_time_diff(shorter_route, longer_route, route_1_start, route_2_start, end, time_diff) # If the difference in time is less than the time difference, return the routes return route_1_coordinates, route_2_coordinates def list_to_string(list_of_lists): """ Takes a list of lists of coordinates and returns a string of the coordinates """ string = '' for i in list_of_lists: string += str(i[1]) + ',' + str(i[0]) + ';' return string def create_json_df(coordinate_string, start, end): coordinates = requests.get( 'http://acetyl.net:5000/trip/v1/bike/' + start + coordinate_string + end + '?roundtrip=false&source=first&destination=last') coordinates = coordinates.json() # Create a dataframe from the JSON df = pd.DataFrame(coordinates['waypoints']) # Separate the location column into lon and lat columns df['lat'] = df['location'].apply(lambda x: x[0]) df['lon'] = df['location'].apply(lambda x: x[1]) df['waypoint_index'] = df['waypoint_index'].astype(int) # Map out the waypoints in order of the waypoint index df = df.sort_values(by=['waypoint_index']) return df def get_trip_time(coordinate_string, num_waypoints, start, end): """ Takes a list of lists of coordinates and returns the time of the trip in hours """ coordinates = requests.get( 'http://acetyl.net:5000/trip/v1/bike/' + start + coordinate_string + end + '?roundtrip=false&source=first&destination=last') coordinates = coordinates.json() travel_time_seconds = int(coordinates['trips'][0]['duration']) waypoint_time_seconds = num_waypoints * 60 total_time_hours = (travel_time_seconds + waypoint_time_seconds) / 3600 return total_time_hours def normalize_gps(coordinates, centroids): """ Takes a list of lists of coordinates and centroids and returns a list of lists of normalized coordinates and centroids """ # Create a list of latitudes and longitudes latitudes = [i[0] for i in coordinates] longitudes = [i[1] for i in coordinates] # Find the minimum and maximum latitudes and longitudes min_lat = min(latitudes) max_lat = max(latitudes) min_lon = min(longitudes) max_lon = max(longitudes) # Normalize the coordinates and centroids using min-max normalization normalized_coordinates = [] normalized_centroids = [] for i in coordinates: normalized_coordinates.append( [__min_max_normalize__(i[0], min_lat, max_lat), __min_max_normalize__(i[1], min_lon, max_lon)]) for i in centroids: normalized_centroids.append( [__min_max_normalize__(i[0], min_lat, max_lat), __min_max_normalize__(i[1], min_lon, max_lon)]) return normalized_coordinates, normalized_centroids def __min_max_normalize__(value, min_value, max_value): """ Takes a value, min value, and max value and returns the normalized value """ return (value - min_value) / (max_value - min_value) # Given two clusters and their respective lists of coordinates, move one coordinate from the larger centroid to the smaller centroid def move_coordinate(larger_centroid_coordinates, smaller_centroid_coordinates): # Calculate the centroid of the smaller cluster smaller_centroid = [sum([i[0] for i in smaller_centroid_coordinates]) / len(smaller_centroid_coordinates), sum([i[1] for i in smaller_centroid_coordinates]) / len(smaller_centroid_coordinates)] # Find the coordinate in larger_centroid_coordinates that is closest to smaller_centroid closest_coordinate = larger_centroid_coordinates[0] closest_coordinate_distance = __distance__(closest_coordinate, smaller_centroid) for coordinate in larger_centroid_coordinates: if __distance__(coordinate, smaller_centroid) < closest_coordinate_distance: closest_coordinate = coordinate closest_coordinate_distance = __distance__(coordinate, smaller_centroid) return closest_coordinate def __distance__(coordinate1, coordinate2): """ Takes two coordinates and returns the distance between them """ return ((coordinate1[0] - coordinate2[0]) ** 2 + (coordinate1[1] - coordinate2[1]) ** 2) ** 0.5