summaryrefslogtreecommitdiff
path: root/dashboard_website/router.py
blob: 5d5a909c1578af7b0a45e83e38ad8dbe64ab462b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import numpy as np
import requests
from sklearn.cluster import KMeans
import time
from datetime import datetime

from datastructs import *


host = "http://acetyl.net:5000"  # queries acetyl.net:5000, the OSRM engine


# external facing functions

# gets single leg route between bike and clue
# should be HD and GeoJSON
def getRouteFullJSON(bike, clue):
    bike = bike.toJSON(); clue = clue.toJSON()
    url = f"{host}/route/v1/bike/{bike['longitude']},{bike['latitude']};{clue['longitude']},{clue['latitude']}?steps=true&overview=full&geometries=geojson"
    r = requests.get(url)
    return r.json()


def getRouteHDPolyline(bike, clue):
    bike = bike.toJSON(); clue = clue.toJSON()
    url = f"{host}/route/v1/bike/{bike['longitude']},{bike['latitude']};{clue['longitude']},{clue['latitude']}?overview=full&geometries=geojson"
    r = requests.get(url)

    p = r.json()['routes'][0]['geometry']['coordinates']
    return p


def getRouteFastPolyline(bike, clue):
    bike = bike.toJSON(); clue = clue.toJSON()
    url = f"{host}/route/v1/bike/{bike['longitude']},{bike['latitude']};{clue['longitude']},{clue['latitude']}?geometries=geojson"
    r = requests.get(url)
    p = r.json()['routes'][0]['geometry']['coordinates']
    return p


def getZSP(bike, home, clue_cluster):
    pass


# determines clusters based on current bikes and clues
def getClusters(bikes, clues, endpoint):
    clusters = [[] for bike in bikes ]
    route_geos = [[] for bike in bikes ]
    times = {}
    active_indices = [i for i in range(len(bikes)) if bikes[i].status == "ACTIVE"]
    active_bikes = [bike for bike in bikes if bike.status == "ACTIVE"]
    if len(active_bikes) == 0:
        return clusters, route_geos, times
    active_clues = [clue for clue in clues if clue.status == "UNVISITED"]
    # select only active bikes
    # select only unvisited clues
    clusters_t, route_geos_t, times_t = cluster_and_optimize(active_clues, active_bikes, endpoint)
    for i in range(len(active_indices)):
        route_geos[active_indices[i]] = route_geos_t[i]
        clusters[active_indices[i]] = clusters_t[i] 
        bikes[active_indices[i]].setCluster(clusters_t[i])
        times[bikes[active_indices[i]].name] = times_t[i]

    # return list of clue clusters corresponding to bikes
    return clusters, route_geos, times


# utility functions (internal)
def cluster_and_optimize(clues: [Clue], bikes: [Bike], end: Point, time_diff=0.25, max_time=24, n=2):
    """
    Takes a dataframe of gps coordinates, a list of centroids, and an end point and returns a dataframe with a cluster
    :param clues: a list of clues
    :param bikes: a list of centroids
    :param end: the end point of the trip
    :param time_diff: the maximum time difference between the longest trip and the average trip
    :param max_time: the maximum time of the trip
    :param n: the number of routes to create
    :return: a list of lists of clues (ordered by position on route), and a list of json route geojsons
    """
    routes = [clues] # one bike = one set of routes. only need to remove the faraway waypoints
    if len(bikes) > 1:
        # Create a new column with normalized gps coordinates and centroids
        normalized_points, norm_centroids = __normalize_points(clues, bikes)
        # Cluster the coordinates
        kmeans = KMeans(n_clusters=len(norm_centroids), init=norm_centroids)
        kmeans.fit(normalized_points)

        # Split the clues into clusters based on the cluster labels
        routes = [[] for i in range(len(norm_centroids))]
        for i, label in enumerate(kmeans.labels_):
            routes[label].append(clues[i])

        routes = __minimize_route_time_diff(routes, bikes, end, time_diff, n)
    
    # Remove waypoints from the longest route until the trip time is less than the max time
    for i in range(len(routes)):
        routes[i] = __remove_longest_waypoints(routes[i], bikes[i], end, max_time)
    

    # Get the json of the routes
    route_waypoints = []
    geometries = []
    times = []
    for i, route in enumerate(routes):
        route_json = __get_json(__clues_to_string(route), __clues_to_string([bikes[i]]), __clues_to_string([end])[:-1])
        geometries.append(route_json['trips'][0]['geometry']['coordinates'])
        route_waypoints.append(route_json['waypoints'])
        eta = time.time() + route_json['trips'][0]['duration'] + 90 * len(route)
        eta_str = datetime.fromtimestamp(eta).strftime("%I:%M:%S%p")
        times.append(eta_str)

    # Use the waypoint_index to reorder each route
    for i, route in enumerate(routes):
        route2 = ["" for x in route]
        for j,k in enumerate(route_waypoints[i][1:-1]):
            route2[ k['waypoint_index']-1 ] = route[j]
        routes[i] = route2

    return routes, geometries, times


def __clues_to_string(points: [Clue]):
    """
    Takes a list of points and returns a string of the list of points
    :param points: a list of points
    :return: a string of the list of points
    """
    string = ''
    for i in points:
        string += str(i.longitude) + ',' + str(i.latitude) + ';'

    return string


def __get_json(coordinate_string, start, end):
    """
    Takes a string of coordinates and returns the json of the route
    :param coordinate_string: a string of coordinates
    :param start: the start point of the trip
    :param end: the end point of the trip
    :return: the json of the route
    """
    coordinates = requests.get(
        'http://acetyl.net:5000/trip/v1/bike/' + start + coordinate_string + end + '?roundtrip=false&source=first&destination=last&geometries=geojson&overview=full')
    coordinates = coordinates.json()

    return coordinates


def __get_trip_time(coordinate_string, num_waypoints, start, end, time_per_waypoint=90, seconds=False):
    """
    Takes a string of coordinates and returns the trip time in hours
    :param coordinate_string: a string of coordinates
    :param num_waypoints: the number of waypoints
    :param start: the start point of the trip
    :param end: the end point of the trip
    :param time_per_waypoint: the time per waypoint in seconds
    :return: the trip time in hours
    """
    coordinates = requests.get(
        'http://acetyl.net:5000/trip/v1/bike/' + start + coordinate_string + end + '?roundtrip=false&source=first&destination=last')
    coordinates = coordinates.json()

    travel_time_seconds = int(coordinates['trips'][0]['duration'])
    waypoint_time_seconds = num_waypoints * time_per_waypoint
    if seconds:
        return (travel_time_seconds + waypoint_time_seconds)
    total_time_hours = (travel_time_seconds + waypoint_time_seconds) / 3600

    return total_time_hours


def __minimize_route_time_diff(routes: [Clue], starts: [Point], end: Point, time_diff, n):
    """
    Takes a list of lists of coordinates, a list of start points, an end point, a time difference, and a number of routes
    :param routes: the list of lists of coordinates
    :param starts: the list of start points
    :param end: the end point
    :param time_diff: the time difference
    :param n: the number of routes
    :return: a list of lists of coordinates
    """
    times = []

    for i, route in enumerate(routes):
        times.append(__get_trip_time(__clues_to_string(route), len(route), __clues_to_string([starts[i]]),
                                     __clues_to_string([end])[:-1]))

    # Find the average trip time
    average_time = np.mean(times)

    # Sort the trip times
    sorted_indices = np.argsort(times)

    # Find the difference between the longest trip time and the average trip time
    time_difference = times[sorted_indices[-1]] - average_time

    # If the difference is greater than the time difference, move a coordinate from the longest route to the shortest route
    if time_difference > time_diff:
        # Move a coordinate from the longest route to the shortest route
        closest_coordinate = __find_closest_coordinate(routes[sorted_indices[-1]],
                                                       __mean_center(routes[sorted_indices[0]]))
        routes[sorted_indices[0]].append(closest_coordinate)
        routes[sorted_indices[-1]].remove(closest_coordinate)

        # Recursively minimize the time difference between the routes
        return __minimize_route_time_diff(routes, starts, end, time_diff, n)

    # If the difference of the longest trip time from average is less than the time difference, return the routes
    return routes


def __remove_longest_waypoints(route_coordinates: [Clue], start: Bike, end: Point, max_time):
    """
    Takes a list of coordinates, a start point, an end point, and a maximum time and returns a list of coordinates
    :param route_coordinates: the list of coordinates
    :param start: the start point
    :param end: the end point
    :param max_time: the maximum time
    :return: a list of coordinates
    """
    # Find the trip time for the route
    route_time = __get_trip_time(__clues_to_string(route_coordinates), len(route_coordinates),
                                 __clues_to_string([start]), __clues_to_string([end])[:-1])

    # If the trip time is greater than the max time, remove the waypoint with the longest distance from the mean
    if route_time > max_time:
        route_mean = __mean_center(route_coordinates)
        furthest_coordinate = __find_farthest_coordinate(route_coordinates, route_mean)
        route_coordinates.remove(furthest_coordinate)

        return __remove_longest_waypoints(route_coordinates, start, end, max_time)

    return route_coordinates


def __normalize_points(clues: [Clue], bikes: [Bike]):
    """
    Takes a list of coordinates and a list of centroids and returns a list of normalized coordinates and a list of
    normalized centroids
    :param clues: the list of coordinates
    :param bikes: the list of centroids
    :return: the list of normalized coordinates and the list of normalized centroids
    """

    # Create a list of latitudes and longitudes
    latitudes = [i.latitude for i in clues]
    longitudes = [i.longitude for i in clues]

    # Find the minimum and maximum latitudes and longitudes
    min_lat = min(latitudes)
    max_lat = max(latitudes)
    min_lon = min(longitudes)
    max_lon = max(longitudes)

    # Normalize the coordinates and centroids using min-max normalization
    normalized_coordinates = []
    normalized_centroids = []

    for i in clues:
        normalized_coordinates.append(
            [__min_max_normalize(i.latitude, min_lat, max_lat), __min_max_normalize(i.longitude, min_lon, max_lon)])
    for i in bikes:
        normalized_centroids.append(
            [__min_max_normalize(i.latitude, min_lat, max_lat), __min_max_normalize(i.longitude, min_lon, max_lon)])

    return normalized_coordinates, normalized_centroids


def __min_max_normalize(value, min_value, max_value):
    """
    Takes a value, a minimum value, and a maximum value and returns the normalized value
    :param value: the value
    :param min_value: the minimum value
    :param max_value: the maximum value
    :return: the normalized value
    """
    return (value - min_value) / (max_value - min_value)


def __find_closest_coordinate(clues: [Clue], centroid: Point):
    """
    Takes a list of coordinates and a centroid and returns the clue in the list that is closest to the centroid
    :param clues: the list of coordinates
    :param centroid: the centroid
    :return: the clue in the list that is closest to the centroid
    """
    # Convert the clues to a list of points
    closest_coordinate = clues[0]
    closest_coordinate_distance = __distance(closest_coordinate, centroid)

    for clue in clues:
        if __distance(clue, centroid) < closest_coordinate_distance:
            closest_coordinate = clue
            closest_coordinate_distance = __distance(clue, centroid)

    return closest_coordinate


def __find_farthest_coordinate(clues: [Clue], centroid: Point):
    """
    Takes a list of coordinates and a centroid and returns the clue in the list that is farthest from the centroid
    :param clues: the list of coordinates
    :param centroid: the centroid
    :return: the clue in the list that is farthest from the centroid
    """
    farthest_coordinate = clues[0]
    farthest_coordinate_distance = __distance(farthest_coordinate, centroid)

    for clue in clues:
        if __distance(clue, centroid) > farthest_coordinate_distance:
            farthest_coordinate = clue
            farthest_coordinate_distance = __distance(clue, centroid)

    return farthest_coordinate


def __mean_center(clues: [Clue]):
    """
    Takes a list of coordinates and returns the mean center of the coordinates
    :param clues: the list of coordinates
    :return: the mean center of the coordinates
    """
    return Point(np.mean([coordinate.latitude for coordinate in clues]),
                    np.mean([coordinate.longitude for coordinate in clues]))


def __distance(coordinate1: Clue, coordinate2: Point):
    """
    Takes two coordinates and returns the distance between them
    :param coordinate1: the first coordinate
    :param coordinate2: the second coordinate
    :return: the distance between the two coordinates
    """
    return ((coordinate1.latitude - coordinate2.latitude) ** 2 + (
            coordinate1.longitude - coordinate2.longitude) ** 2) ** 0.5