summaryrefslogtreecommitdiff
path: root/utils.py
blob: a4b789d27ddd8f54040841757bb1897dc74762b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import folium
import numpy as np
import pandas as pd
import requests
from sklearn.cluster import KMeans


def cluster_and_minimize_2(df, centroids, norm_centroids, end, time_diff, max_time=24, n=2):
    # Cluster the coordinates
    kmeans = KMeans(n_clusters=len(norm_centroids), init=norm_centroids)
    kmeans.fit(df['normalized_gps'].values.tolist())

    df['cluster'] = kmeans.labels_
    centroid_1 = list_to_string([centroids[0]])
    centroid_2 = list_to_string([centroids[1]])

    # Return the list of locations in each cluster
    route_1 = df[df['cluster'] == 0]
    route_2 = df[df['cluster'] == 1]

    route_1_coordinates, route_2_coordinates = minimize_route_time_diff(route_1['gps'].values.tolist(),
                                                                        route_2['gps'].values.tolist(),
                                                                        centroid_1, centroid_2, end, time_diff, n)

    # Remove waypoints from the longest route until the trip time is less than the max time
    route_1_coordinates = __remove_longest_waypoints__(route_1_coordinates, centroid_1, end, max_time)
    route_2_coordinates = __remove_longest_waypoints__(route_2_coordinates, centroid_2, end, max_time)

    # Edit the dataframe to reflect the new coordinate clusters
    df.loc[df['gps'].astype(str).isin(map(str, route_1_coordinates)), 'cluster'] = 0
    df.loc[df['gps'].astype(str).isin(map(str, route_2_coordinates)), 'cluster'] = 1

    return df, route_1_coordinates, route_2_coordinates


def minimize_route_time_diff(route_1_coordinates, route_2_coordinates, route_1_start, route_2_start, end,
                             time_diff, n):
    """
    Takes two routes and a time difference and returns a route that is the same length as the shorter route but has a
    time difference that is less than the time difference
    """
    # Find the trip time for each route
    route_1_time = get_trip_time(list_to_string(route_1_coordinates), len(route_1_coordinates), route_1_start, end)
    route_2_time = get_trip_time(list_to_string(route_2_coordinates), len(route_2_coordinates), route_2_start, end)

    # Find the average trip time
    average_time = (route_1_time + route_2_time) / 2

    # Define a list of all times and route coordinates
    times = [route_1_time, route_2_time]
    routes = [route_1_coordinates, route_2_coordinates]

    # Sort the routes by time
    sorted_indices = np.argsort(times)

    # If the difference of the longest trip time from average is greater than the time difference
    if times[sorted_indices[1]] - average_time > time_diff:
        # Move the closest coordinate(s) from the longest route to the shortest route
        for i in range(n):
            closest_coordinate = __move_coordinate__(routes[sorted_indices[1]], routes[sorted_indices[0]])
            routes[sorted_indices[1]].remove(closest_coordinate)
            routes[sorted_indices[0]].append(closest_coordinate)

        # Recursively call the function
        return minimize_route_time_diff(routes[0], routes[1], route_1_start, route_2_start, end, time_diff, n)

    # If the difference of the longest trip time from average is less than the time difference, return the routes
    return routes[0], routes[1]


# Create a function to minimize the time difference between three routes
def cluster_and_minimize_3(df, centroids, norm_centroids, end, time_diff, max_time=24, n=2):
    # Cluster the coordinates
    kmeans = KMeans(n_clusters=len(norm_centroids), init=norm_centroids)

    # Fit the coordinates to the clusters
    kmeans.fit(df['normalized_gps'].values.tolist())

    # Add the cluster labels to the dataframe
    df['cluster'] = kmeans.labels_

    # Create centroid strings
    centroid_1 = list_to_string([centroids[0]])
    centroid_2 = list_to_string([centroids[1]])
    centroid_3 = list_to_string([centroids[2]])

    # Return the list of locations in each cluster
    route_1 = df[df['cluster'] == 0]
    route_2 = df[df['cluster'] == 1]
    route_3 = df[df['cluster'] == 2]

    # Minimize the time difference between the routes
    route_1_coordinates, route_2_coordinates, route_3_coordinates = minimize_route_time_diff_3(
        route_1['gps'].values.tolist(), route_2['gps'].values.tolist(), route_3['gps'].values.tolist(),
        centroid_1, centroid_2, centroid_3, end, time_diff, n)

    # Remove waypoints from the longest route until the trip time is less than the max time
    route_1_coordinates = __remove_longest_waypoints__(route_1_coordinates, centroid_1, end, max_time)
    route_2_coordinates = __remove_longest_waypoints__(route_2_coordinates, centroid_2, end, max_time)
    route_3_coordinates = __remove_longest_waypoints__(route_3_coordinates, centroid_3, end, max_time)

    # Edit the dataframe to reflect the new coordinate clusters
    df.loc[df['gps'].astype(str).isin(map(str, route_1_coordinates)), 'cluster'] = 0
    df.loc[df['gps'].astype(str).isin(map(str, route_2_coordinates)), 'cluster'] = 1
    df.loc[df['gps'].astype(str).isin(map(str, route_3_coordinates)), 'cluster'] = 2

    return df, route_1_coordinates, route_2_coordinates, route_3_coordinates


def minimize_route_time_diff_3(route_1_coordinates, route_2_coordinates, route_3_coordinates,
                               route_1_start, route_2_start, route_3_start, end, time_diff, n):
    """
    Takes three routes and a time difference and returns routes that have time differences less than the time difference
    """
    # Find the trip time for each route
    route_1_time = get_trip_time(list_to_string(route_1_coordinates), len(route_1_coordinates), route_1_start, end)
    route_2_time = get_trip_time(list_to_string(route_2_coordinates), len(route_2_coordinates), route_2_start, end)
    route_3_time = get_trip_time(list_to_string(route_3_coordinates), len(route_3_coordinates), route_3_start, end)

    # Find the average trip time
    average_time = (route_1_time + route_2_time + route_3_time) / 3

    # Define a list of all times and route coordinates
    times = [route_1_time, route_2_time, route_3_time]
    routes = [route_1_coordinates, route_2_coordinates, route_3_coordinates]

    # Sort the routes by time
    sorted_indices = np.argsort(times)

    # If the difference of the longest trip time from average is greater than the time difference
    if times[sorted_indices[2]] - average_time > time_diff:
        # Move the closest coordinate(s) from the longest route to the shortest route
        for i in range(n):
            closest_coordinate = __move_coordinate__(routes[sorted_indices[2]], routes[sorted_indices[0]])
            routes[sorted_indices[2]].remove(closest_coordinate)
            routes[sorted_indices[0]].append(closest_coordinate)

        # Recursively call the function
        return minimize_route_time_diff_3(routes[0], routes[1], routes[2], route_1_start, route_2_start, route_3_start,
                                          end, time_diff, n)

    # If the difference of the longest trip time from average is less than the time difference, return the routes
    return routes[0], routes[1], routes[2]


def __remove_longest_waypoints__(route_coordinates, start, end, max_time):
    """
    Takes a list of lists of coordinates and returns a list of lists of coordinates that is the same length as the
    original list but has a trip time less than the max time
    """
    # Find the trip time for the route
    route_time = get_trip_time(list_to_string(route_coordinates), len(route_coordinates), start, end)

    # If the trip time is greater than the max time, remove the waypoint with the longest distance from the mean
    if route_time > max_time:
        route_mean = __mean_center__(route_coordinates)
        furthest_coordinate = __find_farthest_coordinate__(route_coordinates, route_mean)
        route_coordinates.remove(furthest_coordinate)

        return __remove_longest_waypoints__(route_coordinates, start, end, max_time)

    return route_coordinates


def list_to_string(list_of_lists):
    """
    Takes a list of lists of coordinates and returns a string of the coordinates
    """
    string = ''
    for i in list_of_lists:
        string += str(i[1]) + ',' + str(i[0]) + ';'

    return string


def create_json_df(coordinate_string, start, end):
    coordinates = requests.get(
        'http://acetyl.net:5000/trip/v1/bike/' + start + coordinate_string + end + '?roundtrip=false&source=first&destination=last')
    coordinates = coordinates.json()

    # Create a dataframe from the JSON
    df = pd.DataFrame(coordinates['waypoints'])

    # Separate the location column into lon and lat columns
    df['lat'] = df['location'].apply(lambda x: x[0])
    df['lon'] = df['location'].apply(lambda x: x[1])

    df['waypoint_index'] = df['waypoint_index'].astype(int)

    # Map out the waypoints in order of the waypoint index
    df = df.sort_values(by=['waypoint_index'])

    return df


def get_trip_time(coordinate_string, num_waypoints, start, end):
    """
    Takes a list of lists of coordinates and returns the time of the trip in hours
    """
    coordinates = requests.get(
        'http://acetyl.net:5000/trip/v1/bike/' + start + coordinate_string + end + '?roundtrip=false&source=first&destination=last')
    coordinates = coordinates.json()

    travel_time_seconds = int(coordinates['trips'][0]['duration'])
    waypoint_time_seconds = num_waypoints * 90

    total_time_hours = (travel_time_seconds + waypoint_time_seconds) / 3600

    return total_time_hours


def normalize_gps(coordinates, centroids):
    """
    Takes a list of lists of coordinates and centroids and returns a list of lists of normalized coordinates and centroids
    """

    # Create a list of latitudes and longitudes
    latitudes = [i[0] for i in coordinates]
    longitudes = [i[1] for i in coordinates]

    # Find the minimum and maximum latitudes and longitudes
    min_lat = min(latitudes)
    max_lat = max(latitudes)
    min_lon = min(longitudes)
    max_lon = max(longitudes)

    # Normalize the coordinates and centroids using min-max normalization
    normalized_coordinates = []
    normalized_centroids = []

    for i in coordinates:
        normalized_coordinates.append(
            [__min_max_normalize__(i[0], min_lat, max_lat), __min_max_normalize__(i[1], min_lon, max_lon)])
    for i in centroids:
        normalized_centroids.append(
            [__min_max_normalize__(i[0], min_lat, max_lat), __min_max_normalize__(i[1], min_lon, max_lon)])

    return normalized_coordinates, normalized_centroids


def __min_max_normalize__(value, min_value, max_value):
    """
    Takes a value, min value, and max value and returns the normalized value
    """
    return (value - min_value) / (max_value - min_value)


# Given two clusters and their respective lists of coordinates, move one coordinate from the larger centroid to the smaller centroid
def __move_coordinate__(larger_centroid_coordinates, smaller_centroid_coordinates):
    # Calculate the centroid of the smaller cluster
    smaller_centroid = __mean_center__(smaller_centroid_coordinates)

    # Find the coordinate in the larger cluster that is closest to the centroid of the smaller cluster
    closest_coordinate = __find_closest_coordinate__(larger_centroid_coordinates, smaller_centroid)

    return closest_coordinate


def __find_closest_coordinate__(coordinates, centroid):
    """
    Takes a list of coordinates and a centroid and returns the coordinate in the list that is closest to the centroid
    """
    closest_coordinate = coordinates[0]
    closest_coordinate_distance = __distance__(closest_coordinate, centroid)

    for coordinate in coordinates:
        if __distance__(coordinate, centroid) < closest_coordinate_distance:
            closest_coordinate = coordinate
            closest_coordinate_distance = __distance__(coordinate, centroid)

    return closest_coordinate


def __find_farthest_coordinate__(coordinates, centroid):
    """
    Takes a list of coordinates and a centroid and returns the coordinate in the list that is furthest from the centroid
    """
    farthest_coordinate = coordinates[0]
    farthest_coordinate_distance = __distance__(farthest_coordinate, centroid)

    for coordinate in coordinates:
        if __distance__(coordinate, centroid) > farthest_coordinate_distance:
            farthest_coordinate = coordinate
            farthest_coordinate_distance = __distance__(coordinate, centroid)

    return farthest_coordinate


def __mean_center__(coordinates):
    """
    Takes a list of coordinates and returns the mean center of the coordinates
    """
    return [sum([i[0] for i in coordinates]) / len(coordinates), sum([i[1] for i in coordinates]) / len(coordinates)]


def __distance__(coordinate1, coordinate2):
    """
    Takes two coordinates and returns the distance between them
    """
    return ((coordinate1[0] - coordinate2[0]) ** 2 + (coordinate1[1] - coordinate2[1]) ** 2) ** 0.5