summaryrefslogtreecommitdiff
path: root/utils.py
blob: c37c64ae12e23d31fdbec458ebc9a0b05fda1560 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import numpy as np
import pandas as pd
import requests
from sklearn.cluster import KMeans


def cluster_and_optimize(df, centroids, end, time_diff=0.25, max_time=24, n=2):
    """
    Takes a dataframe of gps coordinates, a list of centroids, and an end point and returns a dataframe with a cluster
    :param df: a dataframe of gps coordinates
    :param centroids: a list of centroids
    :param end: the end point of the trip
    :param time_diff: the maximum time difference between the longest trip and the average trip
    :param max_time: the maximum time of the trip
    :param n: the number of routes to create
    :return: a dataframe with a cluster column
    """
    # Create a new column with normalized gps coordinates and centroids
    df['normalized_gps'], norm_centroids = __normalize_gps(df['gps'].values.tolist(), centroids)

    # Cluster the coordinates
    kmeans = KMeans(n_clusters=len(norm_centroids), init=norm_centroids)
    kmeans.fit(df['normalized_gps'].values.tolist())

    df['cluster'] = kmeans.labels_

    routes = []
    starts = []
    for i in range(len(centroids)):
        routes.append(df[df['cluster'] == i]['gps'].values.tolist())
        starts.append(list_to_string([centroids[i]]))

    routes = __minimize_route_time_diff(routes, starts, end, time_diff, n)

    # Remove waypoints from the longest route until the trip time is less than the max time
    for i in range(len(routes)):
        routes[i] = __remove_longest_waypoints(routes[i], starts[i], end, max_time)
        df.loc[df['gps'].astype(str).isin(map(str, routes[i])), 'cluster'] = i

    return df, routes


def list_to_string(list_of_lists):
    """
    Takes a list of lists and returns a string of the list of lists
    :param list_of_lists: a list of lists
    :return: a string of the list of lists
    """
    string = ''
    for i in list_of_lists:
        string += str(i[1]) + ',' + str(i[0]) + ';'

    return string


def create_json_df(coordinate_string, start, end):
    """
    Takes a string of coordinates and returns a dataframe of the coordinates in order of the waypoint index
    :param coordinate_string: a string of coordinates
    :param start: the start point of the trip
    :param end: the end point of the trip
    :return: a dataframe of the coordinates in order of the waypoint index
    """
    coordinates = requests.get(
        'http://acetyl.net:5000/trip/v1/bike/' + start + coordinate_string + end + '?roundtrip=false&source=first&destination=last')
    coordinates = coordinates.json()

    # Create a dataframe from the JSON
    df = pd.DataFrame(coordinates['waypoints'])

    # Separate the location column into lon and lat columns
    df['lat'] = df['location'].apply(lambda x: x[0])
    df['lon'] = df['location'].apply(lambda x: x[1])

    df['waypoint_index'] = df['waypoint_index'].astype(int)

    # Map out the waypoints in order of the waypoint index
    df = df.sort_values(by=['waypoint_index'])

    return df


def get_trip_time(coordinate_string, num_waypoints, start, end, time_per_waypoint=90):
    """
    Takes a string of coordinates and returns the trip time in hours
    :param coordinate_string: a string of coordinates
    :param num_waypoints: the number of waypoints
    :param start: the start point of the trip
    :param end: the end point of the trip
    :param time_per_waypoint: the time per waypoint in seconds
    :return: the trip time in hours
    """
    coordinates = requests.get(
        'http://acetyl.net:5000/trip/v1/bike/' + start + coordinate_string + end + '?roundtrip=false&source=first&destination=last')
    coordinates = coordinates.json()

    travel_time_seconds = int(coordinates['trips'][0]['duration'])
    waypoint_time_seconds = num_waypoints * time_per_waypoint

    total_time_hours = (travel_time_seconds + waypoint_time_seconds) / 3600

    return total_time_hours


def __minimize_route_time_diff(routes, starts, end, time_diff, n):
    """
    Takes a list of lists of coordinates, a list of start points, an end point, a time difference, and a number of routes
    :param routes: the list of lists of coordinates
    :param starts: the list of start points
    :param end: the end point
    :param time_diff: the time difference
    :param n: the number of routes
    :return: a list of lists of coordinates
    """
    times = []

    for i, route in enumerate(routes):
        times.append(get_trip_time(list_to_string(route), len(route), starts[i], end))

    # Find the average trip time
    average_time = np.mean(times)

    # Sort the trip times
    sorted_indices = np.argsort(times)

    # Find the difference between the longest trip time and the average trip time
    time_difference = times[sorted_indices[-1]] - average_time

    # If the difference is greater than the time difference, move a coordinate from the longest route to the shortest route
    if time_difference > time_diff:
        # Move a coordinate from the longest route to the shortest route
        closest_coordinate = __find_closest_coordinate(routes[sorted_indices[-1]],
                                                       __mean_center(routes[sorted_indices[0]]))
        routes[sorted_indices[0]].append(closest_coordinate)
        routes[sorted_indices[-1]].remove(closest_coordinate)

        # Recursively minimize the time difference between the routes
        return __minimize_route_time_diff(routes, starts, end, time_diff, n)

    # If the difference of the longest trip time from average is less than the time difference, return the routes
    return routes


def __remove_longest_waypoints(route_coordinates, start, end, max_time):
    """
    Takes a list of coordinates, a start point, an end point, and a maximum time and returns a list of coordinates
    :param route_coordinates: the list of coordinates
    :param start: the start point
    :param end: the end point
    :param max_time: the maximum time
    :return: a list of coordinates
    """
    # Find the trip time for the route
    route_time = get_trip_time(list_to_string(route_coordinates), len(route_coordinates), start, end)

    # If the trip time is greater than the max time, remove the waypoint with the longest distance from the mean
    if route_time > max_time:
        route_mean = __mean_center(route_coordinates)
        furthest_coordinate = __find_farthest_coordinate(route_coordinates, route_mean)
        route_coordinates.remove(furthest_coordinate)

        return __remove_longest_waypoints(route_coordinates, start, end, max_time)

    return route_coordinates


def __normalize_gps(coordinates, centroids):
    """
    Takes a list of coordinates and a list of centroids and returns a list of normalized coordinates and a list of
    normalized centroids
    :param coordinates: the list of coordinates
    :param centroids: the list of centroids
    :return: the list of normalized coordinates and the list of normalized centroids
    """

    # Create a list of latitudes and longitudes
    latitudes = [i[0] for i in coordinates]
    longitudes = [i[1] for i in coordinates]

    # Find the minimum and maximum latitudes and longitudes
    min_lat = min(latitudes)
    max_lat = max(latitudes)
    min_lon = min(longitudes)
    max_lon = max(longitudes)

    # Normalize the coordinates and centroids using min-max normalization
    normalized_coordinates = []
    normalized_centroids = []

    for i in coordinates:
        normalized_coordinates.append(
            [__min_max_normalize(i[0], min_lat, max_lat), __min_max_normalize(i[1], min_lon, max_lon)])
    for i in centroids:
        normalized_centroids.append(
            [__min_max_normalize(i[0], min_lat, max_lat), __min_max_normalize(i[1], min_lon, max_lon)])

    return normalized_coordinates, normalized_centroids


def __min_max_normalize(value, min_value, max_value):
    """
    Takes a value, a minimum value, and a maximum value and returns the normalized value
    :param value: the value
    :param min_value: the minimum value
    :param max_value: the maximum value
    :return: the normalized value
    """
    return (value - min_value) / (max_value - min_value)


def __find_closest_coordinate(coordinates, centroid):
    """
    Takes a list of coordinates and a centroid and returns the coordinate in the list that is closest to the centroid
    :param coordinates: the list of coordinates
    :param centroid: the centroid
    :return: the coordinate in the list that is closest to the centroid
    """
    closest_coordinate = coordinates[0]
    closest_coordinate_distance = __distance(closest_coordinate, centroid)

    for coordinate in coordinates:
        if __distance(coordinate, centroid) < closest_coordinate_distance:
            closest_coordinate = coordinate
            closest_coordinate_distance = __distance(coordinate, centroid)

    return closest_coordinate


def __find_farthest_coordinate(coordinates, centroid):
    """
    Takes a list of coordinates and a centroid and returns the coordinate in the list that is farthest from the centroid
    :param coordinates: the list of coordinates
    :param centroid: the centroid
    :return: the coordinate in the list that is farthest from the centroid
    """
    farthest_coordinate = coordinates[0]
    farthest_coordinate_distance = __distance(farthest_coordinate, centroid)

    for coordinate in coordinates:
        if __distance(coordinate, centroid) > farthest_coordinate_distance:
            farthest_coordinate = coordinate
            farthest_coordinate_distance = __distance(coordinate, centroid)

    return farthest_coordinate


def __mean_center(coordinates):
    """
    Takes a list of coordinates and returns the mean center of the coordinates
    :param coordinates: the list of coordinates
    :return: the mean center of the coordinates
    """
    return [sum([i[0] for i in coordinates]) / len(coordinates), sum([i[1] for i in coordinates]) / len(coordinates)]


def __distance(coordinate1, coordinate2):
    """
    Takes two coordinates and returns the distance between them
    :param coordinate1: the first coordinate
    :param coordinate2: the second coordinate
    :return: the distance between the two coordinates
    """
    return ((coordinate1[0] - coordinate2[0]) ** 2 + (coordinate1[1] - coordinate2[1]) ** 2) ** 0.5