summaryrefslogtreecommitdiff
path: root/firmware/rf test/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rcc_ex.c
diff options
context:
space:
mode:
authorAnson Bridges <bridges.anson@gmail.com>2026-02-17 11:37:50 -0800
committerAnson Bridges <bridges.anson@gmail.com>2026-02-17 11:37:50 -0800
commitfb1611c0ca99d9e609057c46507be2af8389bb7b (patch)
tree646ac568fdad1e6cf9e1f5767295b183bc5c5441 /firmware/rf test/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rcc_ex.c
parent6e952fe110c2a48204c8cb0a836309ab97e5979a (diff)
firmware coadHEADmaster
Diffstat (limited to 'firmware/rf test/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rcc_ex.c')
-rw-r--r--firmware/rf test/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rcc_ex.c2328
1 files changed, 2328 insertions, 0 deletions
diff --git a/firmware/rf test/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rcc_ex.c b/firmware/rf test/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rcc_ex.c
new file mode 100644
index 0000000..8d4148e
--- /dev/null
+++ b/firmware/rf test/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rcc_ex.c
@@ -0,0 +1,2328 @@
+/**
+ ******************************************************************************
+ * @file stm32wbxx_hal_rcc_ex.c
+ * @author MCD Application Team
+ * @brief Extended RCC HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities RCC extended peripheral:
+ * + Extended Peripheral Control functions
+ * + Extended Clock management functions
+ * + Extended Clock Recovery System Control functions
+ ******************************************************************************
+ * @attention
+ *
+ * Copyright (c) 2019 STMicroelectronics.
+ * All rights reserved.
+ *
+ * This software is licensed under terms that can be found in the LICENSE file
+ * in the root directory of this software component.
+ * If no LICENSE file comes with this software, it is provided AS-IS.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32wbxx_hal.h"
+
+/** @addtogroup STM32WBxx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup RCCEx RCCEx
+ * @brief RCC Extended HAL module driver
+ * @{
+ */
+
+#ifdef HAL_RCC_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private defines -----------------------------------------------------------*/
+/** @defgroup RCCEx_Private_Constants RCCEx Private Constants
+ * @{
+ */
+#if defined(SAI1)
+#define PLLSAI1_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
+#endif /* SAI1 */
+#define PLL_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
+
+#define CLOCKSMPS_TIMEOUT_VALUE (5000U) /* 5 s */
+
+#define __LSCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
+#define LSCO1_GPIO_PORT GPIOA
+#define LSCO1_PIN GPIO_PIN_2
+
+#define __LSCO2_CLK_ENABLE() __HAL_RCC_GPIOH_CLK_ENABLE()
+#define LSCO2_GPIO_PORT GPIOH
+#define LSCO2_PIN GPIO_PIN_3
+
+#if defined(RCC_LSCO3_SUPPORT)
+#define __LSCO3_CLK_ENABLE() __HAL_RCC_GPIOC_CLK_ENABLE()
+#define LSCO3_GPIO_PORT GPIOC
+#define LSCO3_PIN GPIO_PIN_12
+#endif /* RCC_LSCO3_SUPPORT */
+
+#define LSI2_TIMEOUT_VALUE (3U) /* to be adjusted with DS */
+
+/**
+ * @}
+ */
+
+/* Private macros ------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @defgroup RCCEx_Private_Functions RCCEx Private Functions
+ * @{
+ */
+#if defined(SAI1)
+static HAL_StatusTypeDef RCCEx_PLLSAI1_ConfigNP(RCC_PLLSAI1InitTypeDef *PLLSAI1);
+static HAL_StatusTypeDef RCCEx_PLLSAI1_ConfigNQ(RCC_PLLSAI1InitTypeDef *PLLSAI1);
+static HAL_StatusTypeDef RCCEx_PLLSAI1_ConfigNR(RCC_PLLSAI1InitTypeDef *PLLSAI1);
+#endif /* SAI1 */
+
+static uint32_t RCC_PLL_GetFreqDomain_P(void);
+static uint32_t RCC_PLL_GetFreqDomain_Q(void);
+
+#if defined(SAI1)
+static uint32_t RCC_PLLSAI1_GetFreqDomain_R(void);
+static uint32_t RCC_PLLSAI1_GetFreqDomain_P(void);
+static uint32_t RCC_PLLSAI1_GetFreqDomain_Q(void);
+#endif /* SAI1 */
+
+/**
+ * @}
+ */
+
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions
+ * @{
+ */
+
+/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions
+ * @brief Extended Peripheral Control functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Extended Peripheral Control functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to control the RCC Clocks
+ frequencies.
+ [..]
+ (@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to
+ select the RTC clock source; in this case the Backup domain will be reset in
+ order to modify the RTC Clock source, as consequence RTC registers (including
+ the backup registers) and RCC_BDCR register are set to their reset values.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initialize the RCC extended peripherals clocks according to the specified
+ * parameters in the @ref RCC_PeriphCLKInitTypeDef.
+ * @param PeriphClkInit pointer to a @ref RCC_PeriphCLKInitTypeDef structure that
+ * contains a field PeriphClockSelection which can be a combination of the following values:
+ *
+ * @arg @ref RCC_PERIPHCLK_USART1 USART1 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_LPUART1 LPUART1 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2C1 I2C1 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2C3 I2C3 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_LPTIM1 LPTIM1 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_LPTIM2 LPTIM2 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_SAI1 SAI1 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
+ * @arg @ref RCC_PERIPHCLK_RNG RNG peripheral clock
+ * @arg @ref RCC_PERIPHCLK_ADC ADC peripheral clock
+ * @arg @ref RCC_PERIPHCLK_RTC RTC peripheral clock
+ * @arg @ref RCC_PERIPHCLK_RFWAKEUP RFWKP peripheral clock
+ * @arg @ref RCC_PERIPHCLK_SMPS SMPS peripheral clock
+ *
+ *
+ * @note Care must be taken when @ref HAL_RCCEx_PeriphCLKConfig() is used to select
+ * the RTC clock source: in this case the access to Backup domain is enabled.
+ *
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
+{
+ uint32_t tickstart;
+ HAL_StatusTypeDef ret = HAL_OK; /* Intermediate status */
+ HAL_StatusTypeDef status = HAL_OK; /* Final status */
+
+ /* Check the parameters */
+ assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));
+
+#if defined(SAI1)
+ /*-------------------------- SAI1 clock source configuration ---------------------*/
+ if ((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI1) == RCC_PERIPHCLK_SAI1))
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_SAI1CLK(PeriphClkInit->Sai1ClockSelection));
+
+ switch (PeriphClkInit->Sai1ClockSelection)
+ {
+ case RCC_SAI1CLKSOURCE_PLL: /* PLL is used as clock source for SAI1 */
+ /* Enable SAI1 Clock output generated form System PLL . */
+ __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SAI1CLK);
+
+ /* SAI1 clock source config set later after clock selection check */
+ break;
+
+ case RCC_SAI1CLKSOURCE_PLLSAI1: /* PLLSAI1 is used as clock source for SAI1 */
+ /* PLLSAI1 parameters N & P configuration and clock output (PLLSAI1ClockOut) */
+ ret = RCCEx_PLLSAI1_ConfigNP(&(PeriphClkInit->PLLSAI1));
+ /* SAI1 clock source config set later after clock selection check */
+ break;
+
+ case RCC_SAI1CLKSOURCE_PIN: /* External clock is used as source of SAI1 clock*/
+ /* SAI1 clock source config set later after clock selection check */
+ break;
+
+ case RCC_SAI1CLKSOURCE_HSI:
+
+ break;
+
+ default:
+ ret = HAL_ERROR;
+ break;
+ }
+
+ if (ret == HAL_OK)
+ {
+ /* Set the source of SAI1 clock*/
+ __HAL_RCC_SAI1_CONFIG(PeriphClkInit->Sai1ClockSelection);
+ }
+ else
+ {
+ /* set overall return value */
+ status = ret;
+ }
+ }
+#endif /* SAI1 */
+
+ /*-------------------------- RTC clock source configuration ----------------------*/
+ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC)
+ {
+ uint32_t rtcclocksource = LL_RCC_GetRTCClockSource();
+
+ /* Check for RTC Parameters used to output RTCCLK */
+ assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection));
+
+ /* Configure the clock source only if a different source is expected */
+ if (rtcclocksource != PeriphClkInit->RTCClockSelection)
+ {
+ /* Enable write access to Backup domain */
+ HAL_PWR_EnableBkUpAccess();
+
+ /* If a clock source is not yet selected */
+ if (rtcclocksource == RCC_RTCCLKSOURCE_NONE)
+ {
+ /* Directly set the configuration of the clock source selection */
+ LL_RCC_SetRTCClockSource(PeriphClkInit->RTCClockSelection);
+ }
+ else /* A clock source is already selected */
+ {
+ /* Store the content of BDCR register before the reset of Backup Domain */
+ uint32_t bdcr = LL_RCC_ReadReg(BDCR);
+
+ /* RTC Clock selection can be changed only if the Backup Domain is reset */
+ LL_RCC_ForceBackupDomainReset();
+ LL_RCC_ReleaseBackupDomainReset();
+
+ /* Set the value of the clock source selection */
+ MODIFY_REG(bdcr, RCC_BDCR_RTCSEL, PeriphClkInit->RTCClockSelection);
+
+ /* Restore the content of BDCR register */
+ LL_RCC_WriteReg(BDCR, bdcr);
+
+ /* Wait for LSE reactivation if LSE was enable prior to Backup Domain reset */
+ if (LL_RCC_LSE_IsEnabled() == 1U)
+ {
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSE is ready */
+ while (LL_RCC_LSE_IsReady() != 1U)
+ {
+ if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
+ {
+ ret = HAL_TIMEOUT;
+ break;
+ }
+ }
+ }
+ }
+
+ /* set overall return value */
+ status = ret;
+ }
+ else
+ {
+ /* set overall return value */
+ status = ret;
+ }
+
+ }
+
+ /*-------------------------- USART1 clock source configuration -------------------*/
+ if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection));
+
+ /* Configure the USART1 clock source */
+ __HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection);
+ }
+
+#if defined(LPUART1)
+ /*-------------------------- LPUART1 clock source configuration ------------------*/
+ if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPUART1) == RCC_PERIPHCLK_LPUART1)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_LPUART1CLKSOURCE(PeriphClkInit->Lpuart1ClockSelection));
+
+ /* Configure the LPUAR1 clock source */
+ __HAL_RCC_LPUART1_CONFIG(PeriphClkInit->Lpuart1ClockSelection);
+ }
+#endif /* LPUART1 */
+
+ /*-------------------------- LPTIM1 clock source configuration -------------------*/
+ if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM1) == (RCC_PERIPHCLK_LPTIM1))
+ {
+ assert_param(IS_RCC_LPTIM1CLK(PeriphClkInit->Lptim1ClockSelection));
+ __HAL_RCC_LPTIM1_CONFIG(PeriphClkInit->Lptim1ClockSelection);
+ }
+
+ /*-------------------------- LPTIM2 clock source configuration -------------------*/
+ if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM2) == (RCC_PERIPHCLK_LPTIM2))
+ {
+ assert_param(IS_RCC_LPTIM2CLK(PeriphClkInit->Lptim2ClockSelection));
+ __HAL_RCC_LPTIM2_CONFIG(PeriphClkInit->Lptim2ClockSelection);
+ }
+
+ /*-------------------------- I2C1 clock source configuration ---------------------*/
+ if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection));
+
+ /* Configure the I2C1 clock source */
+ __HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection);
+ }
+
+#if defined(I2C3)
+ /*-------------------------- I2C3 clock source configuration ---------------------*/
+ if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C3) == RCC_PERIPHCLK_I2C3)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_I2C3CLKSOURCE(PeriphClkInit->I2c3ClockSelection));
+
+ /* Configure the I2C3 clock source */
+ __HAL_RCC_I2C3_CONFIG(PeriphClkInit->I2c3ClockSelection);
+ }
+#endif /* I2C3 */
+
+#if defined(USB)
+ /*-------------------------- USB clock source configuration ----------------------*/
+ if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == (RCC_PERIPHCLK_USB))
+ {
+ assert_param(IS_RCC_USBCLKSOURCE(PeriphClkInit->UsbClockSelection));
+ __HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection);
+
+ if (PeriphClkInit->UsbClockSelection == RCC_USBCLKSOURCE_PLL)
+ {
+ /* Enable PLLQ output */
+ __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_USBCLK);
+ }
+#if defined(SAI1)
+ if (PeriphClkInit->UsbClockSelection == RCC_USBCLKSOURCE_PLLSAI1)
+ {
+ /* PLLSAI1 parameters N & Q configuration and clock output (PLLSAI1ClockOut) */
+ ret = RCCEx_PLLSAI1_ConfigNQ(&(PeriphClkInit->PLLSAI1));
+
+ if (ret != HAL_OK)
+ {
+ /* set overall return value */
+ status = ret;
+ }
+ }
+#endif /* SAI1 */
+ }
+#endif /* USB */
+
+ /*-------------------------- RNG clock source configuration ----------------------*/
+ if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RNG) == (RCC_PERIPHCLK_RNG))
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_RNGCLKSOURCE(PeriphClkInit->RngClockSelection));
+
+ /* Configure the RNG clock source */
+ __HAL_RCC_RNG_CONFIG(PeriphClkInit->RngClockSelection);
+
+ if (PeriphClkInit->RngClockSelection == RCC_RNGCLKSOURCE_PLL)
+ {
+ /* Enable PLLQ output */
+ __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_RNGCLK);
+ }
+ }
+
+ /*-------------------------- ADC clock source configuration ----------------------*/
+ if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_ADC) == RCC_PERIPHCLK_ADC)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_ADCCLKSOURCE(PeriphClkInit->AdcClockSelection));
+
+ /* Configure the ADC interface clock source */
+ __HAL_RCC_ADC_CONFIG(PeriphClkInit->AdcClockSelection);
+
+ if (PeriphClkInit->AdcClockSelection == RCC_ADCCLKSOURCE_PLL)
+ {
+ /* Enable RCC_PLL_RNGCLK output */
+ __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_ADCCLK);
+ }
+
+#if defined(SAI1)
+ if (PeriphClkInit->AdcClockSelection == RCC_ADCCLKSOURCE_PLLSAI1)
+ {
+ /* PLLSAI1 parameters N & R configuration and clock output (PLLSAI1ClockOut) */
+ ret = RCCEx_PLLSAI1_ConfigNR(&(PeriphClkInit->PLLSAI1));
+
+ if (ret != HAL_OK)
+ {
+ /* set overall return value */
+ status = ret;
+ }
+ }
+#endif /* SAI1 */
+ }
+
+ /*-------------------------- RFWKP clock source configuration ----------------------*/
+ if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RFWAKEUP) == RCC_PERIPHCLK_RFWAKEUP)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_RFWKPCLKSOURCE(PeriphClkInit->RFWakeUpClockSelection));
+
+ /* Configure the RFWKP interface clock source */
+ __HAL_RCC_RFWAKEUP_CONFIG(PeriphClkInit->RFWakeUpClockSelection);
+
+ }
+
+#if defined(RCC_SMPS_SUPPORT)
+ /*-------------------------- SMPS clock source configuration ----------------------*/
+ if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SMPS) == RCC_PERIPHCLK_SMPS)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_SMPSCLKDIV(PeriphClkInit->SmpsDivSelection));
+ assert_param(IS_RCC_SMPSCLKSOURCE(PeriphClkInit->SmpsClockSelection));
+
+ /* Configure the SMPS interface clock division factor */
+ __HAL_RCC_SMPS_DIV_CONFIG(PeriphClkInit->SmpsDivSelection);
+
+ /* Configure the SMPS interface clock source */
+ __HAL_RCC_SMPS_CONFIG(PeriphClkInit->SmpsClockSelection);
+ }
+#endif /* RCC_SMPS_SUPPORT */
+
+ return status;
+}
+
+
+/**
+ * @brief Get the RCC_ClkInitStruct according to the internal RCC configuration registers.
+ * @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
+ * returns the configuration information for the Extended Peripherals
+ * clocks(SAI1, LPTIM1, LPTIM2, I2C1, I2C3, LPUART1,
+ * USART1, RTC, ADCx, USB, RNG, RFWKP, SMPS).
+ * @retval None
+ */
+void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
+{
+ /* Set all possible values for the extended clock type parameter------------*/
+
+ PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_I2C1 | \
+ RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM2 | \
+ RCC_PERIPHCLK_RNG | RCC_PERIPHCLK_ADC | \
+ RCC_PERIPHCLK_RTC | RCC_PERIPHCLK_RFWAKEUP;
+#if defined(LPUART1)
+ PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_LPUART1;
+#endif /* LPUART1 */
+
+#if defined(I2C3)
+ PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_I2C3;
+#endif /* I2C3 */
+
+#if defined(SAI1)
+ PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_SAI1;
+#endif /* SAI1 */
+
+#if defined(USB)
+ PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USB;
+#endif /* USB */
+
+#if defined(RCC_SMPS_SUPPORT)
+ PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_SMPS;
+#endif /* RCC_SMPS_SUPPORT */
+
+
+#if defined(SAI1)
+ /* Get the PLLSAI1 Clock configuration -----------------------------------------------*/
+ PeriphClkInit->PLLSAI1.PLLN = LL_RCC_PLLSAI1_GetN();
+ PeriphClkInit->PLLSAI1.PLLP = LL_RCC_PLLSAI1_GetP();
+ PeriphClkInit->PLLSAI1.PLLR = LL_RCC_PLLSAI1_GetR();
+ PeriphClkInit->PLLSAI1.PLLQ = LL_RCC_PLLSAI1_GetQ();
+#endif /* SAI1 */
+
+ /* Get the USART1 clock source ---------------------------------------------*/
+ PeriphClkInit->Usart1ClockSelection = __HAL_RCC_GET_USART1_SOURCE();
+
+#if defined(LPUART1)
+ /* Get the LPUART1 clock source --------------------------------------------*/
+ PeriphClkInit->Lpuart1ClockSelection = __HAL_RCC_GET_LPUART1_SOURCE();
+#endif /* LPUART1 */
+
+ /* Get the I2C1 clock source -----------------------------------------------*/
+ PeriphClkInit->I2c1ClockSelection = __HAL_RCC_GET_I2C1_SOURCE();
+
+#if defined(I2C3)
+ /* Get the I2C3 clock source -----------------------------------------------*/
+ PeriphClkInit->I2c3ClockSelection = __HAL_RCC_GET_I2C3_SOURCE();
+#endif /* I2C3 */
+
+ /* Get the LPTIM1 clock source ---------------------------------------------*/
+ PeriphClkInit->Lptim1ClockSelection = __HAL_RCC_GET_LPTIM1_SOURCE();
+
+ /* Get the LPTIM2 clock source ---------------------------------------------*/
+ PeriphClkInit->Lptim2ClockSelection = __HAL_RCC_GET_LPTIM2_SOURCE();
+
+#if defined(SAI1)
+ /* Get the SAI1 clock source -----------------------------------------------*/
+ PeriphClkInit->Sai1ClockSelection = __HAL_RCC_GET_SAI1_SOURCE();
+#endif /* SAI1 */
+
+ /* Get the RTC clock source ------------------------------------------------*/
+ PeriphClkInit->RTCClockSelection = __HAL_RCC_GET_RTC_SOURCE();
+
+#if defined(USB)
+ /* Get the USB clock source ------------------------------------------------*/
+ PeriphClkInit->UsbClockSelection = __HAL_RCC_GET_USB_SOURCE();
+#endif /* USB */
+
+ /* Get the RNG clock source ------------------------------------------------*/
+ PeriphClkInit->RngClockSelection = HAL_RCCEx_GetRngCLKSource();
+
+ /* Get the ADC clock source ------------------------------------------------*/
+ PeriphClkInit->AdcClockSelection = __HAL_RCC_GET_ADC_SOURCE();
+
+ /* Get the RFWKP clock source ----------------------------------------------*/
+ PeriphClkInit->RFWakeUpClockSelection = __HAL_RCC_GET_RFWAKEUP_SOURCE();
+
+#if defined(RCC_SMPS_SUPPORT)
+ /* Get the SMPS clock division factor --------------------------------------*/
+ PeriphClkInit->SmpsDivSelection = __HAL_RCC_GET_SMPS_DIV();
+
+ /* Get the SMPS clock source -----------------------------------------------*/
+ PeriphClkInit->SmpsClockSelection = __HAL_RCC_GET_SMPS_SOURCE();
+#endif /* RCC_SMPS_SUPPORT */
+
+}
+
+/**
+ * @brief Return the peripheral clock frequency for peripherals with clock source
+ * @note Return 0 if peripheral clock identifier not managed by this API
+ * @param PeriphClk Peripheral clock identifier
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_PERIPHCLK_RTC RTC peripheral clock
+ * @arg @ref RCC_PERIPHCLK_ADC ADC peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2C1 I2C1 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2C3 I2C3 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_LPTIM1 LPTIM1 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_LPTIM2 LPTIM2 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_LPUART1 LPUART1 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_RNG RNG peripheral clock
+ * @arg @ref RCC_PERIPHCLK_SAI1 SAI1 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_USART1 USART1 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
+ * @arg @ref RCC_PERIPHCLK_RFWAKEUP RFWKP peripheral clock
+ * @arg @ref RCC_PERIPHCLK_SMPS SMPS peripheral clock
+ * @retval Frequency in Hz
+ */
+uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk)
+{
+ uint32_t frequency = 0U;
+
+#if defined(RCC_SMPS_SUPPORT)
+ uint32_t smps_prescaler_index = ((LL_RCC_GetSMPSPrescaler()) >> RCC_SMPSCR_SMPSDIV_Pos);
+#endif /* RCC_SMPS_SUPPORT */
+
+ /* Check the parameters */
+ assert_param(IS_RCC_PERIPHCLOCK(PeriphClk));
+
+ if (PeriphClk == RCC_PERIPHCLK_RTC)
+ {
+ uint32_t rtcClockSource = LL_RCC_GetRTCClockSource();
+
+ if (rtcClockSource == LL_RCC_RTC_CLKSOURCE_LSE) /* LSE clock used as RTC clock source */
+ {
+ if (LL_RCC_LSE_IsReady() == 1U)
+ {
+ frequency = LSE_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+ else if (rtcClockSource == LL_RCC_RTC_CLKSOURCE_LSI) /* LSI clock used as RTC clock source */
+ {
+ const uint32_t temp_lsi1ready = LL_RCC_LSI1_IsReady();
+ const uint32_t temp_lsi2ready = LL_RCC_LSI2_IsReady();
+ if ((temp_lsi1ready == 1U) || (temp_lsi2ready == 1U))
+ {
+ frequency = LSI_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+ else if (rtcClockSource == LL_RCC_RTC_CLKSOURCE_HSE_DIV32) /* HSE clock used as RTC clock source */
+ {
+ frequency = HSE_VALUE / 32U;
+ }
+ else /* No clock used as RTC clock source */
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+#if defined(SAI1)
+ else if (PeriphClk == RCC_PERIPHCLK_SAI1)
+ {
+ switch (LL_RCC_GetSAIClockSource(LL_RCC_SAI1_CLKSOURCE))
+ {
+ case LL_RCC_SAI1_CLKSOURCE_HSI: /* HSI clock used as SAI1 clock source */
+ if (LL_RCC_HSI_IsReady() == 1U)
+ {
+ frequency = HSI_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ break;
+
+ case LL_RCC_SAI1_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as SAI1 clock source */
+ if (LL_RCC_PLLSAI1_IsReady() == 1U)
+ {
+ frequency = RCC_PLLSAI1_GetFreqDomain_P();
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ break;
+
+ case LL_RCC_SAI1_CLKSOURCE_PLL: /* PLL clock used as SAI1 clock source */
+ if (LL_RCC_PLL_IsReady() == 1U)
+ {
+ frequency = RCC_PLL_GetFreqDomain_P();
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ break;
+
+ default: /* External input clock used as SAI1 clock source */
+ frequency = EXTERNAL_SAI1_CLOCK_VALUE;
+ break;
+ }
+ }
+#endif /* SAI1 */
+ else if (PeriphClk == RCC_PERIPHCLK_RNG)
+ {
+ uint32_t rngClockSource = HAL_RCCEx_GetRngCLKSource();
+
+ if (rngClockSource == RCC_RNGCLKSOURCE_LSI) /* LSI clock used as RNG clock source */
+ {
+ const uint32_t temp_lsi1ready = LL_RCC_LSI1_IsReady();
+ const uint32_t temp_lsi2ready = LL_RCC_LSI2_IsReady();
+ if ((temp_lsi1ready == 1U) || (temp_lsi2ready == 1U))
+ {
+ frequency = LSI_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+ else if (rngClockSource == RCC_RNGCLKSOURCE_LSE) /* LSE clock used as RNG clock source */
+ {
+ if (LL_RCC_LSE_IsReady() == 1U)
+ {
+ frequency = LSE_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+ else if (rngClockSource == RCC_RNGCLKSOURCE_PLL) /* PLL clock divided by 3 used as RNG clock source */
+ {
+ if (LL_RCC_PLL_IsReady() == 1U)
+ {
+ frequency = (RCC_PLL_GetFreqDomain_Q() / 3U);
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+ else if (rngClockSource == RCC_RNGCLKSOURCE_MSI) /* MSI clock divided by 3 used as RNG clock source */
+ {
+ if (LL_RCC_MSI_IsReady() == 1U)
+ {
+ frequency = (__LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()) / 3U);
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+#if defined(SAI1)
+ else if (rngClockSource == RCC_RNGCLKSOURCE_PLLSAI1) /* PLLSAI1 clock used as SAI1 clock source */
+ {
+ if (LL_RCC_PLLSAI1_IsReady() == 1U)
+ {
+ frequency = RCC_PLLSAI1_GetFreqDomain_Q();
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+#endif /* SAI1 */
+ else /* HSI48 clock divided by 3 used as RNG clock source */
+ {
+#if defined(RCC_HSI48_SUPPORT)
+ if (LL_RCC_HSI48_IsReady() == 1U)
+ {
+ frequency = HSI48_VALUE / 3U;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+#else
+ /* Nothing to do as frequency already initialized to 0U */
+#endif /* RCC_HSI48_SUPPORT */
+ }
+ }
+#if defined(USB)
+ else if (PeriphClk == RCC_PERIPHCLK_USB)
+ {
+ switch (LL_RCC_GetUSBClockSource(LL_RCC_USB_CLKSOURCE))
+ {
+#if defined(SAI1)
+ case LL_RCC_USB_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as USB clock source */
+ if (LL_RCC_PLLSAI1_IsReady() == 1U)
+ {
+ frequency = RCC_PLLSAI1_GetFreqDomain_Q();
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ break;
+#endif /* SAI1 */
+
+ case LL_RCC_USB_CLKSOURCE_PLL: /* PLL clock used as USB clock source */
+ if (LL_RCC_PLL_IsReady() == 1U)
+ {
+ frequency = RCC_PLL_GetFreqDomain_Q();
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ break;
+
+ case LL_RCC_USB_CLKSOURCE_MSI: /* MSI clock used as USB clock source */
+ if (LL_RCC_MSI_IsReady() == 1U)
+ {
+ frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ break;
+
+ default: /* HSI48 clock used as USB clock source */
+ if (LL_RCC_HSI48_IsReady() == 1U)
+ {
+ frequency = HSI48_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ break;
+ }
+ }
+#endif /* USB */
+ else if (PeriphClk == RCC_PERIPHCLK_USART1)
+ {
+ switch (LL_RCC_GetUSARTClockSource(LL_RCC_USART1_CLKSOURCE))
+ {
+ case LL_RCC_USART1_CLKSOURCE_SYSCLK: /* USART1 Clock is System Clock */
+ frequency = HAL_RCC_GetSysClockFreq();
+ break;
+
+ case LL_RCC_USART1_CLKSOURCE_HSI: /* USART1 Clock is HSI Osc. */
+ if (LL_RCC_HSI_IsReady() == 1U)
+ {
+ frequency = HSI_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ break;
+
+ case LL_RCC_USART1_CLKSOURCE_LSE: /* USART1 Clock is LSE Osc. */
+ if (LL_RCC_LSE_IsReady() == 1U)
+ {
+ frequency = LSE_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ break;
+
+ default: /* USART1 Clock is PCLK2 */
+ frequency = __LL_RCC_CALC_PCLK2_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(),
+ LL_RCC_GetAHBPrescaler()),
+ LL_RCC_GetAPB2Prescaler());
+ break;
+ }
+ }
+#if defined(LPUART1)
+ else if (PeriphClk == RCC_PERIPHCLK_LPUART1)
+ {
+ switch (LL_RCC_GetLPUARTClockSource(LL_RCC_LPUART1_CLKSOURCE))
+ {
+ case LL_RCC_LPUART1_CLKSOURCE_SYSCLK: /* LPUART1 Clock is System Clock */
+ frequency = HAL_RCC_GetSysClockFreq();
+ break;
+
+ case LL_RCC_LPUART1_CLKSOURCE_HSI: /* LPUART1 Clock is HSI Osc. */
+ if (LL_RCC_HSI_IsReady() == 1U)
+ {
+ frequency = HSI_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ break;
+
+ case LL_RCC_LPUART1_CLKSOURCE_LSE: /* LPUART1 Clock is LSE Osc. */
+ if (LL_RCC_LSE_IsReady() == 1U)
+ {
+ frequency = LSE_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ break;
+
+ default: /* LPUART1 Clock is PCLK1 */
+ frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(),
+ LL_RCC_GetAHBPrescaler()),
+ LL_RCC_GetAPB1Prescaler());
+ break;
+ }
+ }
+#endif /* LPUART1 */
+ else if (PeriphClk == RCC_PERIPHCLK_ADC)
+ {
+ switch (LL_RCC_GetADCClockSource(LL_RCC_ADC_CLKSOURCE))
+ {
+#if defined(STM32WB55xx) || defined (STM32WB5Mxx) || defined(STM32WB35xx)
+ case LL_RCC_ADC_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as ADC clock source */
+ if (LL_RCC_PLLSAI1_IsReady() == 1U)
+ {
+ frequency = RCC_PLLSAI1_GetFreqDomain_R();
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ break;
+#elif defined(STM32WB15xx) || defined(STM32WB1Mxx)
+ case LL_RCC_ADC_CLKSOURCE_HSI: /* HSI clock used as ADC clock source */
+ if (LL_RCC_HSI_IsReady() == 1U)
+ {
+ frequency = HSI_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ break;
+#endif /* STM32WB55xx || STM32WB5Mxx || STM32WB35xx */
+ case LL_RCC_ADC_CLKSOURCE_SYSCLK: /* SYSCLK clock used as ADC clock source */
+ frequency = HAL_RCC_GetSysClockFreq();
+ break;
+ case LL_RCC_ADC_CLKSOURCE_PLL: /* PLL clock used as ADC clock source */
+ if (LL_RCC_PLL_IsReady() == 1U)
+ {
+ frequency = RCC_PLL_GetFreqDomain_P();
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ break;
+
+ default: /* No clock used as ADC clock source */
+ break;
+ }
+ }
+ else if (PeriphClk == RCC_PERIPHCLK_I2C1)
+ {
+ switch (LL_RCC_GetI2CClockSource(LL_RCC_I2C1_CLKSOURCE))
+ {
+ case LL_RCC_I2C1_CLKSOURCE_SYSCLK: /* I2C1 Clock is System Clock */
+ frequency = HAL_RCC_GetSysClockFreq();
+ break;
+
+ case LL_RCC_I2C1_CLKSOURCE_HSI: /* I2C1 Clock is HSI Osc. */
+ if (LL_RCC_HSI_IsReady() == 1U)
+ {
+ frequency = HSI_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ break;
+
+ default: /* I2C1 Clock is PCLK1 */
+ frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(),
+ LL_RCC_GetAHBPrescaler()),
+ LL_RCC_GetAPB1Prescaler());
+ break;
+ }
+ }
+#if defined(I2C3)
+ else if (PeriphClk == RCC_PERIPHCLK_I2C3)
+ {
+ switch (LL_RCC_GetI2CClockSource(LL_RCC_I2C3_CLKSOURCE))
+ {
+ case LL_RCC_I2C3_CLKSOURCE_SYSCLK: /* I2C3 Clock is System Clock */
+ frequency = HAL_RCC_GetSysClockFreq();
+ break;
+
+ case LL_RCC_I2C3_CLKSOURCE_HSI: /* I2C3 Clock is HSI Osc. */
+ if (LL_RCC_HSI_IsReady() == 1U)
+ {
+ frequency = HSI_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ break;
+
+ default: /* I2C3 Clock is PCLK1 */
+ frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(),
+ LL_RCC_GetAHBPrescaler()),
+ LL_RCC_GetAPB1Prescaler());
+ break;
+ }
+ }
+#endif /* I2C3 */
+ else if (PeriphClk == RCC_PERIPHCLK_LPTIM1)
+ {
+ uint32_t lptimClockSource = LL_RCC_GetLPTIMClockSource(LL_RCC_LPTIM1_CLKSOURCE);
+
+ if (lptimClockSource == LL_RCC_LPTIM1_CLKSOURCE_LSI) /* LPTIM1 Clock is LSI Osc. */
+ {
+ const uint32_t temp_lsi1ready = LL_RCC_LSI1_IsReady();
+ const uint32_t temp_lsi2ready = LL_RCC_LSI2_IsReady();
+ if ((temp_lsi1ready == 1U) || (temp_lsi2ready == 1U))
+ {
+ frequency = LSI_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+ else if (lptimClockSource == LL_RCC_LPTIM1_CLKSOURCE_HSI) /* LPTIM1 Clock is HSI Osc. */
+ {
+ if (LL_RCC_HSI_IsReady() == 1U)
+ {
+ frequency = HSI_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+ else if (lptimClockSource == LL_RCC_LPTIM1_CLKSOURCE_LSE) /* LPTIM1 Clock is LSE Osc. */
+ {
+ if (LL_RCC_LSE_IsReady() == 1U)
+ {
+ frequency = LSE_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+ else /* LPTIM1 Clock is PCLK1 */
+ {
+ frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(),
+ LL_RCC_GetAHBPrescaler()),
+ LL_RCC_GetAPB1Prescaler());
+ }
+ }
+ else if (PeriphClk == RCC_PERIPHCLK_LPTIM2)
+ {
+ uint32_t lptimClockSource = LL_RCC_GetLPTIMClockSource(LL_RCC_LPTIM2_CLKSOURCE);
+
+ if (lptimClockSource == LL_RCC_LPTIM2_CLKSOURCE_LSI) /* LPTIM2 Clock is LSI Osc. */
+ {
+ const uint32_t temp_lsi1ready = LL_RCC_LSI1_IsReady();
+ const uint32_t temp_lsi2ready = LL_RCC_LSI2_IsReady();
+ if ((temp_lsi1ready == 1U) || (temp_lsi2ready == 1U))
+ {
+ frequency = LSI_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+ else if (lptimClockSource == LL_RCC_LPTIM2_CLKSOURCE_HSI) /* LPTIM2 Clock is HSI Osc. */
+ {
+ if (LL_RCC_HSI_IsReady() == 1U)
+ {
+ frequency = HSI_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+ else if (lptimClockSource == LL_RCC_LPTIM2_CLKSOURCE_LSE) /* LPTIM2 Clock is LSE Osc. */
+ {
+ if (LL_RCC_LSE_IsReady() == 1U)
+ {
+ frequency = LSE_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+ else /* LPTIM2 Clock is PCLK1 */
+ {
+ frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(),
+ LL_RCC_GetAHBPrescaler()),
+ LL_RCC_GetAPB1Prescaler());
+ }
+ }
+ else if (PeriphClk == RCC_PERIPHCLK_RFWAKEUP)
+ {
+ uint32_t rfwkpClockSource = LL_RCC_GetRFWKPClockSource();
+
+ if (rfwkpClockSource == LL_RCC_RFWKP_CLKSOURCE_LSE) /* LSE clock used as RF Wakeup clock source */
+ {
+ if (LL_RCC_LSE_IsReady() == 1U)
+ {
+ frequency = LSE_VALUE;
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+ else if (rfwkpClockSource == LL_RCC_RFWKP_CLKSOURCE_HSE_DIV1024) /* HSE clock used as RF Wakeup clock source */
+ {
+ frequency = HSE_VALUE / 1024U;
+ }
+ else /* No clock used as RF Wakeup clock source */
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+#if defined(RCC_SMPS_SUPPORT)
+ else if (PeriphClk == RCC_PERIPHCLK_SMPS)
+ {
+ uint32_t smpsClockSource = LL_RCC_GetSMPSClockSource();
+
+ if (smpsClockSource == LL_RCC_SMPS_CLKSOURCE_STATUS_HSI) /* SMPS Clock source is HSI Osc. */
+ {
+ if (LL_RCC_HSI_IsReady() == 1U)
+ {
+ frequency = HSI_VALUE / SmpsPrescalerTable[smps_prescaler_index][0];
+ frequency = frequency >> 1U; /* Systematic Div by 2 */
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+ else if (smpsClockSource == LL_RCC_SMPS_CLKSOURCE_STATUS_HSE) /* SMPS Clock source is HSE Osc. */
+ {
+ if (LL_RCC_HSE_IsReady() == 1U)
+ {
+ frequency = HSE_VALUE / SmpsPrescalerTable[smps_prescaler_index][5];
+ frequency = frequency >> 1U; /* Systematic Div by 2 */
+ }
+ else
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+ else if (smpsClockSource == LL_RCC_SMPS_CLKSOURCE_STATUS_MSI) /* SMPS Clock source is MSI Osc. */
+ {
+ switch (LL_RCC_MSI_GetRange())
+ {
+ case LL_RCC_MSIRANGE_8:
+ frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGE_8) / SmpsPrescalerTable[smps_prescaler_index][4];
+ break;
+ case LL_RCC_MSIRANGE_9:
+ frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGE_9) / SmpsPrescalerTable[smps_prescaler_index][3];
+ break;
+ case LL_RCC_MSIRANGE_10:
+ frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGE_10) / SmpsPrescalerTable[smps_prescaler_index][2];
+ break;
+ case LL_RCC_MSIRANGE_11:
+ frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGE_11) / SmpsPrescalerTable[smps_prescaler_index][1];
+ break;
+ default:
+ break;
+ }
+ frequency = frequency >> 1U; /* Systematic Div by 2 */
+ }
+ else /* SMPS has no Clock */
+ {
+ /* Nothing to do as frequency already initialized to 0U */
+ }
+ }
+#endif /* RCC_SMPS_SUPPORT */
+
+ return (frequency);
+}
+
+/**
+ * @brief Return the RNG clock source
+ * @retval The RNG clock source can be one of the following values:
+ * @arg @ref RCC_RNGCLKSOURCE_HSI48 HSI48 clock divided by 3 selected as RNG clock
+ * @arg @ref RCC_RNGCLKSOURCE_PLL PLL "Q" clock divided by 3 selected as RNG clock
+ * @arg @ref RCC_RNGCLKSOURCE_MSI MSI clock divided by 3 selected as RNG clock
+ * @arg @ref RCC_RNGCLKSOURCE_PLLSAI1 PLLSAI1 "Q" clock selected as RNG clock (*)
+ * @arg @ref RCC_RNGCLKSOURCE_LSI LSI clock selected as RNG clock
+ * @arg @ref RCC_RNGCLKSOURCE_LSE LSE clock selected as RNG clock
+ *
+ * (*) Value not defined in all devices.
+ *
+ */
+uint32_t HAL_RCCEx_GetRngCLKSource(void)
+{
+ uint32_t rng_clock_source = LL_RCC_GetRNGClockSource(LL_RCC_RNG_CLKSOURCE);
+ uint32_t clk48_clock_source;
+
+ /* RNG clock source originates from 48 MHz RC oscillator */
+ if (rng_clock_source == RCC_RNGCLKSOURCE_CLK48)
+ {
+ clk48_clock_source = LL_RCC_GetCLK48ClockSource(LL_RCC_CLK48_CLKSOURCE);
+ rng_clock_source = (CLK48_MASK | clk48_clock_source);
+ }
+
+ return rng_clock_source;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_Exported_Functions_Group2 Extended Clock management functions
+ * @brief Extended Clock management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Extended clock management functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to control the
+ activation or deactivation of MSI PLL-mode, PLLSAI1, PLLSAI12, LSE CSS,
+ Low speed clock output and clock after wake-up from STOP mode.
+@endverbatim
+ * @{
+ */
+
+#if defined(SAI1)
+/**
+ * @brief Enable PLLSAI1.
+ * @param PLLSAI1Init pointer to an RCC_PLLSAI1InitTypeDef structure that
+ * contains the configuration information for the PLLSAI1
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCCEx_EnablePLLSAI1(RCC_PLLSAI1InitTypeDef *PLLSAI1Init)
+{
+ uint32_t tickstart;
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* check for PLLSAI1 Parameters used to output PLLSAI1CLK */
+ assert_param(IS_RCC_PLLN_VALUE(PLLSAI1Init->PLLN));
+ assert_param(IS_RCC_PLLP_VALUE(PLLSAI1Init->PLLP));
+ assert_param(IS_RCC_PLLQ_VALUE(PLLSAI1Init->PLLQ));
+ assert_param(IS_RCC_PLLR_VALUE(PLLSAI1Init->PLLR));
+ assert_param(IS_RCC_PLLSAI1CLOCKOUT_VALUE(PLLSAI1Init->PLLSAI1ClockOut));
+
+ /* Disable the PLLSAI1 */
+ __HAL_RCC_PLLSAI1_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLLSAI1 is ready to be updated */
+ while (LL_RCC_PLLSAI1_IsReady() != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
+ {
+ status = HAL_TIMEOUT;
+ break;
+ }
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Configure the PLLSAI1 Multiplication factor N */
+ /* Configure the PLLSAI1 Division factors P, Q and R */
+ __HAL_RCC_PLLSAI1_CONFIG(PLLSAI1Init->PLLN, PLLSAI1Init->PLLP, PLLSAI1Init->PLLQ, PLLSAI1Init->PLLR);
+ /* Configure the PLLSAI1 Clock output(s) */
+ __HAL_RCC_PLLSAI1CLKOUT_ENABLE(PLLSAI1Init->PLLSAI1ClockOut);
+
+ /* Enable the PLLSAI1 again by setting PLLSAI1ON to 1*/
+ __HAL_RCC_PLLSAI1_ENABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLLSAI1 is ready */
+ while (LL_RCC_PLLSAI1_IsReady() != 1U)
+ {
+ if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
+ {
+ status = HAL_TIMEOUT;
+ break;
+ }
+ }
+ }
+
+ return status;
+}
+
+/**
+ * @brief Disable PLLSAI1.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCCEx_DisablePLLSAI1(void)
+{
+ uint32_t tickstart;
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Disable the PLLSAI1 */
+ __HAL_RCC_PLLSAI1_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLLSAI1 is ready */
+ while (LL_RCC_PLLSAI1_IsReady() != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
+ {
+ status = HAL_TIMEOUT;
+ break;
+ }
+ }
+
+ /* Disable the PLLSAI1 Clock outputs */
+ __HAL_RCC_PLLSAI1CLKOUT_DISABLE(RCC_PLLSAI1_SAI1CLK | RCC_PLLSAI1_USBCLK | RCC_PLLSAI1_ADCCLK);
+
+ return status;
+}
+#endif /* SAI1 */
+
+/***********************************************************************************************/
+
+/**
+ * @brief Configure the oscillator clock source for wakeup from Stop and CSS backup clock.
+ * @param WakeUpClk Wakeup clock
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_STOP_WAKEUPCLOCK_MSI MSI oscillator selection
+ * @arg @ref RCC_STOP_WAKEUPCLOCK_HSI HSI oscillator selection
+ * @note This function shall not be called after the Clock Security System on HSE has been
+ * enabled.
+ * @retval None
+ */
+void HAL_RCCEx_WakeUpStopCLKConfig(uint32_t WakeUpClk)
+{
+ assert_param(IS_RCC_STOP_WAKEUPCLOCK(WakeUpClk));
+
+ __HAL_RCC_WAKEUPSTOP_CLK_CONFIG(WakeUpClk);
+}
+
+/**
+ * @brief Enable the LSE Clock Security System.
+ * @note Prior to enable the LSE Clock Security System, LSE oscillator is to be enabled
+ * with HAL_RCC_OscConfig() and the LSE oscillator clock is to be selected as RTC
+ * clock with HAL_RCCEx_PeriphCLKConfig().
+ * @retval None
+ */
+void HAL_RCCEx_EnableLSECSS(void)
+{
+ LL_RCC_LSE_EnableCSS();
+}
+
+/**
+ * @brief Disable the LSE Clock Security System.
+ * @note LSE Clock Security System can only be disabled after a LSE failure detection.
+ * @retval None
+ */
+void HAL_RCCEx_DisableLSECSS(void)
+{
+ LL_RCC_LSE_DisableCSS();
+
+ /* Disable LSE CSS IT if any */
+ __HAL_RCC_DISABLE_IT(RCC_IT_LSECSS);
+}
+
+/**
+ * @brief Enable the LSE Clock Security System Interrupt & corresponding EXTI line.
+ * @note LSE Clock Security System Interrupt is mapped on RTC EXTI line 18
+ * @retval None
+ */
+void HAL_RCCEx_EnableLSECSS_IT(void)
+{
+ /* Enable LSE CSS */
+ LL_RCC_LSE_EnableCSS();
+
+ /* Enable LSE CSS IT */
+ __HAL_RCC_ENABLE_IT(RCC_IT_LSECSS);
+
+ /* Enable IT on EXTI Line 18 */
+ __HAL_RCC_LSECSS_EXTI_ENABLE_IT();
+ __HAL_RCC_LSECSS_EXTI_ENABLE_RISING_EDGE();
+}
+
+/**
+ * @brief Handle the RCC LSE Clock Security System interrupt request.
+ * @retval None
+ */
+void HAL_RCCEx_LSECSS_IRQHandler(void)
+{
+ /* Check RCC LSE CSSF flag */
+ if (__HAL_RCC_GET_IT(RCC_IT_LSECSS))
+ {
+ /* RCC LSE Clock Security System interrupt user callback */
+ HAL_RCCEx_LSECSS_Callback();
+
+ /* Clear RCC LSE CSS pending bit */
+ __HAL_RCC_CLEAR_IT(RCC_IT_LSECSS);
+ }
+}
+
+/**
+ * @brief RCCEx LSE Clock Security System interrupt callback.
+ * @retval none
+ */
+__weak void HAL_RCCEx_LSECSS_Callback(void)
+{
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_RCCEx_LSECSS_Callback should be implemented in the user file
+ */
+}
+
+/**
+ * @brief Select the clock source to output on LSCO1 pin(PA2) or LSC02 pin (PH3) or LSCO3 pin (PC12).
+ * @note PA2, PH3 or PC12 should be configured in alternate function mode.
+ * @param RCC_LSCOx specifies the output direction for the clock source.
+ * @arg @ref RCC_LSCO1 Clock source to output on LSCO1 pin(PA2)
+ * @arg @ref RCC_LSCO2 Clock source to output on LSCO2 pin(PH3)
+ * @arg @ref RCC_LSCO3 Clock source to output on LSCO3 pin(PC12)
+ * @param RCC_LSCOSource specifies the clock source to output.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_LSCOSOURCE_LSI LSI clock selected as LSCO source
+ * @arg @ref RCC_LSCOSOURCE_LSE LSE clock selected as LSCO source
+ * @retval None
+ * @note LSCO should be disable with @ref HAL_RCCEx_DisableLSCO
+ */
+void HAL_RCCEx_LSCOConfig(uint32_t RCC_LSCOx, uint32_t RCC_LSCOSource)
+{
+ GPIO_InitTypeDef GPIO_InitStruct;
+ FlagStatus backupchanged;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_LSCO(RCC_LSCOx));
+ assert_param(IS_RCC_LSCOSOURCE(RCC_LSCOSource));
+
+ /* Common GPIO init parameters */
+ GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
+ GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
+ GPIO_InitStruct.Pull = GPIO_NOPULL;
+
+ /* RCC_LSCO1 */
+ if (RCC_LSCOx == RCC_LSCO1)
+ {
+ /* LSCO1 Clock Enable */
+ __LSCO1_CLK_ENABLE();
+ /* Configure the LSCO1 pin in alternate function mode */
+ GPIO_InitStruct.Pin = LSCO1_PIN;
+ GPIO_InitStruct.Alternate = GPIO_AF0_LSCO;
+ HAL_GPIO_Init(LSCO1_GPIO_PORT, &GPIO_InitStruct);
+ }
+ else if (RCC_LSCOx == RCC_LSCO2)
+ {
+ /* LSCO2 Clock Enable */
+ __LSCO2_CLK_ENABLE();
+ /* Configure the LSCO2 pin in alternate function mode */
+ GPIO_InitStruct.Pin = LSCO2_PIN;
+ GPIO_InitStruct.Alternate = GPIO_AF0_LSCO;
+ HAL_GPIO_Init(LSCO2_GPIO_PORT, &GPIO_InitStruct);
+
+ }
+#if defined(RCC_LSCO3_SUPPORT)
+ else if (RCC_LSCOx == RCC_LSCO3)
+ {
+ /* LSCO3 Clock Enable */
+ __LSCO3_CLK_ENABLE();
+ /* Configure the LSCO3 pin in alternate function mode */
+ GPIO_InitStruct.Pin = LSCO3_PIN;
+ GPIO_InitStruct.Alternate = GPIO_AF6_LSCO;
+ HAL_GPIO_Init(LSCO3_GPIO_PORT, &GPIO_InitStruct);
+ }
+#endif /* RCC_LSCO3_SUPPORT */
+ else
+ {
+ ;
+ }
+
+ /* Update LSCOSEL clock source in Backup Domain control register */
+ if (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
+ {
+ HAL_PWR_EnableBkUpAccess();
+ backupchanged = SET;
+ }
+ else
+ {
+ backupchanged = RESET;
+ }
+
+ MODIFY_REG(RCC->BDCR, RCC_BDCR_LSCOSEL | RCC_BDCR_LSCOEN, RCC_LSCOSource | RCC_BDCR_LSCOEN);
+
+ if (backupchanged == SET)
+ {
+ HAL_PWR_DisableBkUpAccess();
+ }
+
+}
+
+/**
+ * @brief Select the Low Speed clock source to output on LSCO pin (PA2).
+ * @param LSCOSource specifies the Low Speed clock source to output.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_LSCOSOURCE_LSI LSI clock selected as LSCO source
+ * @arg @ref RCC_LSCOSOURCE_LSE LSE clock selected as LSCO source
+ * @retval None
+ */
+void HAL_RCCEx_EnableLSCO(uint32_t LSCOSource)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_LSCOSOURCE(LSCOSource));
+
+ /* Update LSCO selection according to parameter and enable LSCO */
+ MODIFY_REG(RCC->BDCR, RCC_BDCR_LSCOSEL, LSCOSource | RCC_BDCR_LSCOEN);
+}
+
+/**
+ * @brief Disable the Low Speed clock output.
+ * @retval None
+ */
+void HAL_RCCEx_DisableLSCO(void)
+{
+ LL_RCC_LSCO_Disable();
+}
+
+/**
+ * @brief Enable the PLL-mode of the MSI.
+ * @note Prior to enable the PLL-mode of the MSI for automatic hardware
+ * calibration LSE oscillator is to be enabled with @ref HAL_RCC_OscConfig().
+ * @retval None
+ */
+void HAL_RCCEx_EnableMSIPLLMode(void)
+{
+ LL_RCC_MSI_EnablePLLMode() ;
+}
+
+/**
+ * @brief Disable the PLL-mode of the MSI.
+ * @note PLL-mode of the MSI is automatically reset when LSE oscillator is disabled.
+ * @retval None
+ */
+void HAL_RCCEx_DisableMSIPLLMode(void)
+{
+ LL_RCC_MSI_DisablePLLMode() ;
+}
+
+/**
+ * @brief Set trimming value
+ * @param OscillatorType Specifies the oscillator to be trimmed
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_OSCILLATORTYPE_LSI2 LSI2 oscillator selected.
+ * When disabling and re-enabling the LSI2 there is no need for re-trimming
+ * Trimming is only needed once after a NRST reset.
+ * Trimming values comes from factory trimmed flash location (0x1FFF7548).
+ * @note The LSI2 oscillator must be disabled before calling this trimming function through @ref HAL_RCC_OscConfig
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCCEx_TrimOsc(uint32_t OscillatorType)
+{
+#define FTLSI2TRIM (0xFUL)
+ HAL_StatusTypeDef status = HAL_OK;
+
+ assert_param(IS_RCC_TRIMOSC(OscillatorType));
+
+ if (OscillatorType == RCC_OSCILLATORTYPE_LSI2)
+ {
+ if (LL_RCC_LSI2_IsReady() == 1U)
+ {
+ status = HAL_ERROR;
+ }
+ else
+ {
+ /* Copy the LSI2 trimming information from the factory trimmed Flash location */
+ uint32_t factoryTrimming = ((*(uint32_t *)(0x1FFF7548)) & FTLSI2TRIM);
+ LL_RCC_LSI2_SetTrimming(factoryTrimming);
+ }
+ }
+ else
+ {
+ status = HAL_ERROR;
+ }
+ return status;
+}
+
+/**
+ * @}
+ */
+
+#if defined(CRS)
+/** @defgroup RCCEx_Exported_Functions_Group3 Extended Clock Recovery System Control functions
+ * @brief Extended Clock Recovery System Control functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Extended Clock Recovery System Control functions #####
+ ===============================================================================
+ [..]
+ For devices with Clock Recovery System feature (CRS), RCC Extended HAL driver can be used as follows:
+
+ (#) In System clock config, HSI48 needs to be enabled
+
+ (#) Enable CRS clock in IP MSP init which will use CRS functions
+
+ (#) Call CRS functions as follows:
+ (##) Prepare synchronization configuration necessary for HSI48 calibration
+ (+++) Default values can be set for frequency Error Measurement (reload and error limit)
+ and also HSI48 oscillator smooth trimming.
+ (+++) Macro __HAL_RCC_CRS_RELOADVALUE_CALCULATE can be also used to calculate
+ directly reload value with target and synchronization frequencies values
+ (##) Call function HAL_RCCEx_CRSConfig which
+ (+++) Resets CRS registers to their default values.
+ (+++) Configures CRS registers with synchronization configuration
+ (+++) Enables automatic calibration and frequency error counter feature
+ Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the
+ periodic USB SOF will not be generated by the host. No SYNC signal will therefore be
+ provided to the CRS to calibrate the HSI48 on the run. To guarantee the required clock
+ precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs
+ should be used as SYNC signal.
+
+ (##) A polling function is provided to wait for complete synchronization
+ (+++) Call function HAL_RCCEx_CRSWaitSynchronization()
+ (+++) According to CRS status, user can decide to adjust again the calibration or continue
+ application if synchronization is OK
+
+ (#) User can retrieve information related to synchronization in calling function
+ HAL_RCCEx_CRSGetSynchronizationInfo()
+
+ (#) Regarding synchronization status and synchronization information, user can try a new calibration
+ in changing synchronization configuration and call again HAL_RCCEx_CRSConfig.
+ Note: When the SYNC event is detected during the downcounting phase (before reaching the zero value),
+ it means that the actual frequency is lower than the target (and so, that the TRIM value should be
+ incremented), while when it is detected during the upcounting phase it means that the actual frequency
+ is higher (and that the TRIM value should be decremented).
+
+ (#) In interrupt mode, user can resort to the available macros (__HAL_RCC_CRS_XXX_IT). Interrupts will go
+ through CRS Handler (CRS_IRQn/CRS_IRQHandler)
+ (++) Call function HAL_RCCEx_CRSConfig()
+ (++) Enable CRS_IRQn (thanks to NVIC functions)
+ (++) Enable CRS interrupt (__HAL_RCC_CRS_ENABLE_IT)
+ (++) Implement CRS status management in the following user callbacks called from
+ HAL_RCCEx_CRS_IRQHandler():
+ (+++) HAL_RCCEx_CRS_SyncOkCallback()
+ (+++) HAL_RCCEx_CRS_SyncWarnCallback()
+ (+++) HAL_RCCEx_CRS_ExpectedSyncCallback()
+ (+++) HAL_RCCEx_CRS_ErrorCallback()
+
+ (#) To force a SYNC EVENT, user can use the function HAL_RCCEx_CRSSoftwareSynchronizationGenerate().
+ This function can be called before calling HAL_RCCEx_CRSConfig (for instance in Systick handler)
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Start automatic synchronization for polling mode
+ * @param pInit Pointer on RCC_CRSInitTypeDef structure
+ * @retval None
+ */
+void HAL_RCCEx_CRSConfig(RCC_CRSInitTypeDef *pInit)
+{
+ uint32_t value;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_CRS_SYNC_DIV(pInit->Prescaler));
+ assert_param(IS_RCC_CRS_SYNC_SOURCE(pInit->Source));
+ assert_param(IS_RCC_CRS_SYNC_POLARITY(pInit->Polarity));
+ assert_param(IS_RCC_CRS_RELOADVALUE(pInit->ReloadValue));
+ assert_param(IS_RCC_CRS_ERRORLIMIT(pInit->ErrorLimitValue));
+ assert_param(IS_RCC_CRS_HSI48CALIBRATION(pInit->HSI48CalibrationValue));
+
+ /* CONFIGURATION */
+
+ /* Before configuration, reset CRS registers to their default values*/
+ __HAL_RCC_CRS_FORCE_RESET();
+ __HAL_RCC_CRS_RELEASE_RESET();
+
+ /* Set the SYNCDIV[2:0] bits according to Prescaler value */
+ /* Set the SYNCSRC[1:0] bits according to Source value */
+ /* Set the SYNCSPOL bit according to Polarity value */
+ value = (pInit->Prescaler | pInit->Source | pInit->Polarity);
+ /* Set the RELOAD[15:0] bits according to ReloadValue value */
+ value |= pInit->ReloadValue;
+ /* Set the FELIM[7:0] bits according to ErrorLimitValue value */
+ value |= (pInit->ErrorLimitValue << CRS_CFGR_FELIM_Pos);
+ WRITE_REG(CRS->CFGR, value);
+
+ /* Adjust HSI48 oscillator smooth trimming */
+ /* Set the TRIM[5:0] bits according to RCC_CRS_HSI48CalibrationValue value */
+ MODIFY_REG(CRS->CR, CRS_CR_TRIM, (pInit->HSI48CalibrationValue << CRS_CR_TRIM_Pos));
+
+ /* START AUTOMATIC SYNCHRONIZATION*/
+
+ /* Enable Automatic trimming & Frequency error counter */
+ SET_BIT(CRS->CR, CRS_CR_AUTOTRIMEN | CRS_CR_CEN);
+}
+
+/**
+ * @brief Generate the software synchronization event
+ * @retval None
+ */
+void HAL_RCCEx_CRSSoftwareSynchronizationGenerate(void)
+{
+ LL_CRS_GenerateEvent_SWSYNC();
+}
+
+/**
+ * @brief Return synchronization info
+ * @param pSynchroInfo Pointer on @ref RCC_CRSSynchroInfoTypeDef structure
+ * @retval None
+ */
+void HAL_RCCEx_CRSGetSynchronizationInfo(RCC_CRSSynchroInfoTypeDef *pSynchroInfo)
+{
+ /* Check the parameter */
+ assert_param(pSynchroInfo != (void *)NULL);
+
+ /* Get the reload value */
+ pSynchroInfo->ReloadValue = LL_CRS_GetReloadCounter();
+
+ /* Get HSI48 oscillator smooth trimming */
+ pSynchroInfo->HSI48CalibrationValue = LL_CRS_GetHSI48SmoothTrimming();
+
+ /* Get Frequency error capture */
+ pSynchroInfo->FreqErrorCapture = LL_CRS_GetFreqErrorCapture();
+
+ /* Get Frequency error direction */
+ pSynchroInfo->FreqErrorDirection = LL_CRS_GetFreqErrorDirection();
+}
+
+/**
+ * @brief Wait for CRS Synchronization status.
+ * @param Timeout Duration of the timeout
+ * @note Timeout is based on the maximum time to receive a SYNC event based on synchronization
+ * frequency.
+ * @note If Timeout set to HAL_MAX_DELAY, HAL_TIMEOUT will be never returned.
+ * @retval Combination of Synchronization status
+ * This parameter can be a combination of the following values:
+ * @arg @ref RCC_CRS_TIMEOUT
+ * @arg @ref RCC_CRS_SYNCOK
+ * @arg @ref RCC_CRS_SYNCWARN
+ * @arg @ref RCC_CRS_SYNCERR
+ * @arg @ref RCC_CRS_SYNCMISS
+ * @arg @ref RCC_CRS_TRIMOVF
+ */
+uint32_t HAL_RCCEx_CRSWaitSynchronization(uint32_t Timeout)
+{
+ uint32_t crsstatus = RCC_CRS_NONE;
+ uint32_t tickstart;
+
+ /* Get timeout */
+ tickstart = HAL_GetTick();
+
+ /* Wait for CRS flag or timeout detection */
+ do
+ {
+ if (Timeout != HAL_MAX_DELAY)
+ {
+ if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
+ {
+ crsstatus = RCC_CRS_TIMEOUT;
+ }
+ }
+ /* Check CRS SYNCOK flag */
+ if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCOK))
+ {
+ /* CRS SYNC event OK */
+ crsstatus |= RCC_CRS_SYNCOK;
+
+ /* Clear CRS SYNC event OK bit */
+ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCOK);
+ }
+
+ /* Check CRS SYNCWARN flag */
+ if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCWARN))
+ {
+ /* CRS SYNC warning */
+ crsstatus |= RCC_CRS_SYNCWARN;
+
+ /* Clear CRS SYNCWARN bit */
+ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCWARN);
+ }
+
+ /* Check CRS TRIM overflow flag */
+ if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_TRIMOVF))
+ {
+ /* CRS SYNC Error */
+ crsstatus |= RCC_CRS_TRIMOVF;
+
+ /* Clear CRS Error bit */
+ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_TRIMOVF);
+ }
+
+ /* Check CRS Error flag */
+ if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCERR))
+ {
+ /* CRS SYNC Error */
+ crsstatus |= RCC_CRS_SYNCERR;
+
+ /* Clear CRS Error bit */
+ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCERR);
+ }
+
+ /* Check CRS SYNC Missed flag */
+ if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCMISS))
+ {
+ /* CRS SYNC Missed */
+ crsstatus |= RCC_CRS_SYNCMISS;
+
+ /* Clear CRS SYNC Missed bit */
+ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCMISS);
+ }
+
+ /* Check CRS Expected SYNC flag */
+ if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_ESYNC))
+ {
+ /* frequency error counter reached a zero value */
+ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_ESYNC);
+ }
+ } while (RCC_CRS_NONE == crsstatus);
+
+ return crsstatus;
+}
+
+/**
+ * @brief Handle the Clock Recovery System interrupt request.
+ * @retval None
+ */
+void HAL_RCCEx_CRS_IRQHandler(void)
+{
+ uint32_t crserror = RCC_CRS_NONE;
+ /* Get current IT flags and IT sources values */
+ uint32_t itflags = READ_REG(CRS->ISR);
+ uint32_t itsources = READ_REG(CRS->CR);
+
+ /* Check CRS SYNCOK flag */
+ if (((itflags & RCC_CRS_FLAG_SYNCOK) != 0U) && ((itsources & RCC_CRS_IT_SYNCOK) != 0U))
+ {
+ /* Clear CRS SYNC event OK flag */
+ LL_CRS_ClearFlag_SYNCOK();
+
+ /* user callback */
+ HAL_RCCEx_CRS_SyncOkCallback();
+ }
+ /* Check CRS SYNCWARN flag */
+ else if (((itflags & RCC_CRS_FLAG_SYNCWARN) != 0U) && ((itsources & RCC_CRS_IT_SYNCWARN) != 0U))
+ {
+ /* Clear CRS SYNCWARN flag */
+ LL_CRS_ClearFlag_SYNCWARN();
+
+ /* user callback */
+ HAL_RCCEx_CRS_SyncWarnCallback();
+ }
+ /* Check CRS Expected SYNC flag */
+ else if (((itflags & RCC_CRS_FLAG_ESYNC) != 0U) && ((itsources & RCC_CRS_IT_ESYNC) != 0U))
+ {
+ /* frequency error counter reached a zero value */
+ LL_CRS_ClearFlag_ESYNC();
+
+ /* user callback */
+ HAL_RCCEx_CRS_ExpectedSyncCallback();
+ }
+ /* Check CRS Error flags */
+ else
+ {
+ if (((itflags & RCC_CRS_FLAG_ERR) != 0U) && ((itsources & RCC_CRS_IT_ERR) != 0U))
+ {
+ if ((itflags & RCC_CRS_FLAG_SYNCERR) != 0U)
+ {
+ crserror |= RCC_CRS_SYNCERR;
+ }
+ if ((itflags & RCC_CRS_FLAG_SYNCMISS) != 0U)
+ {
+ crserror |= RCC_CRS_SYNCMISS;
+ }
+ if ((itflags & RCC_CRS_FLAG_TRIMOVF) != 0U)
+ {
+ crserror |= RCC_CRS_TRIMOVF;
+ }
+
+ /* Clear CRS Error flags */
+ LL_CRS_ClearFlag_ERR();
+
+ /* user error callback */
+ HAL_RCCEx_CRS_ErrorCallback(crserror);
+ }
+ }
+}
+
+/**
+ * @brief RCCEx Clock Recovery System SYNCOK interrupt callback.
+ * @retval none
+ */
+__weak void HAL_RCCEx_CRS_SyncOkCallback(void)
+{
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the @ref HAL_RCCEx_CRS_SyncOkCallback should be implemented in the user file
+ */
+}
+
+/**
+ * @brief RCCEx Clock Recovery System SYNCWARN interrupt callback.
+ * @retval none
+ */
+__weak void HAL_RCCEx_CRS_SyncWarnCallback(void)
+{
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_RCCEx_CRS_SyncWarnCallback should be implemented in the user file
+ */
+}
+
+/**
+ * @brief RCCEx Clock Recovery System Expected SYNC interrupt callback.
+ * @retval none
+ */
+__weak void HAL_RCCEx_CRS_ExpectedSyncCallback(void)
+{
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_RCCEx_CRS_ExpectedSyncCallback should be implemented in the user file
+ */
+}
+
+/**
+ * @brief RCCEx Clock Recovery System Error interrupt callback.
+ * @param Error Combination of Error status.
+ * This parameter can be a combination of the following values:
+ * @arg @ref RCC_CRS_SYNCERR
+ * @arg @ref RCC_CRS_SYNCMISS
+ * @arg @ref RCC_CRS_TRIMOVF
+ * @retval none
+ */
+__weak void HAL_RCCEx_CRS_ErrorCallback(uint32_t Error)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(Error);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the @ref HAL_RCCEx_CRS_ErrorCallback should be implemented in the user file
+ */
+}
+
+/**
+ * @}
+ */
+#endif /* CRS */
+
+/**
+ * @}
+ */
+
+/** @addtogroup RCCEx_Private_Functions
+ * @{
+ */
+
+#if defined(SAI1)
+/**
+ * @brief Configure the parameters N & P of PLLSAI1 and enable PLLSAI1 output clock(s).
+ * @param PLLSAI1 pointer to an RCC_PLLSAI1InitTypeDef structure that
+ * contains the configuration parameters N & P as well as PLLSAI1 output clock(s)
+ *
+ * @note PLLSAI1 is temporary disable to apply new parameters
+ *
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef RCCEx_PLLSAI1_ConfigNP(RCC_PLLSAI1InitTypeDef *PLLSAI1)
+{
+ uint32_t tickstart;
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* check for PLLSAI1 Parameters used to output PLLSAI1CLK */
+ assert_param(IS_RCC_PLLN_VALUE(PLLSAI1->PLLN));
+ assert_param(IS_RCC_PLLP_VALUE(PLLSAI1->PLLP));
+ assert_param(IS_RCC_PLLSAI1CLOCKOUT_VALUE(PLLSAI1->PLLSAI1ClockOut));
+
+ /* Disable the PLLSAI1 */
+ __HAL_RCC_PLLSAI1_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLLSAI1 is ready to be updated */
+ while (LL_RCC_PLLSAI1_IsReady() != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
+ {
+ status = HAL_TIMEOUT;
+ break;
+ }
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Configure the PLLSAI1 Multiplication factor N */
+ __HAL_RCC_PLLSAI1_MULN_CONFIG(PLLSAI1->PLLN);
+
+ /* Configure the PLLSAI1 Division factor P */
+ __HAL_RCC_PLLSAI1_DIVP_CONFIG(PLLSAI1->PLLP);
+
+ /* Enable the PLLSAI1 again by setting PLLSAI1ON to 1*/
+ __HAL_RCC_PLLSAI1_ENABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLLSAI1 is ready */
+ while (LL_RCC_PLLSAI1_IsReady() != 1U)
+ {
+ if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
+ {
+ status = HAL_TIMEOUT;
+ break;
+ }
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Configure the PLLSAI1 Clock output(s) */
+ __HAL_RCC_PLLSAI1CLKOUT_ENABLE(PLLSAI1->PLLSAI1ClockOut);
+ }
+ }
+
+ return status;
+}
+
+/**
+ * @brief Configure the parameters N & Q of PLLSAI1 and enable PLLSAI1 output clock(s).
+ * @param PLLSAI1 pointer to an RCC_PLLSAI1InitTypeDef structure that
+ * contains the configuration parameters N & Q as well as PLLSAI1 output clock(s)
+ *
+ * @note PLLSAI1 is temporary disable to apply new parameters
+ *
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef RCCEx_PLLSAI1_ConfigNQ(RCC_PLLSAI1InitTypeDef *PLLSAI1)
+{
+ uint32_t tickstart;
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* check for PLLSAI1 Parameters used to output PLLSAI1CLK */
+ assert_param(IS_RCC_PLLN_VALUE(PLLSAI1->PLLN));
+ assert_param(IS_RCC_PLLQ_VALUE(PLLSAI1->PLLQ));
+ assert_param(IS_RCC_PLLSAI1CLOCKOUT_VALUE(PLLSAI1->PLLSAI1ClockOut));
+
+ /* Disable the PLLSAI1 */
+ __HAL_RCC_PLLSAI1_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLLSAI1 is ready to be updated */
+ while (LL_RCC_PLLSAI1_IsReady() != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
+ {
+ status = HAL_TIMEOUT;
+ break;
+ }
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Configure the PLLSAI1 Multiplication factor N */
+ __HAL_RCC_PLLSAI1_MULN_CONFIG(PLLSAI1->PLLN);
+ /* Configure the PLLSAI1 Division factor Q */
+ __HAL_RCC_PLLSAI1_DIVQ_CONFIG(PLLSAI1->PLLQ);
+
+ /* Enable the PLLSAI1 again by setting PLLSAI1ON to 1*/
+ __HAL_RCC_PLLSAI1_ENABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLLSAI1 is ready */
+ while (LL_RCC_PLLSAI1_IsReady() != 1U)
+ {
+ if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
+ {
+ status = HAL_TIMEOUT;
+ break;
+ }
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Configure the PLLSAI1 Clock output(s) */
+ __HAL_RCC_PLLSAI1CLKOUT_ENABLE(PLLSAI1->PLLSAI1ClockOut);
+ }
+ }
+
+ return status;
+}
+
+/**
+ * @brief Configure the parameters N & R of PLLSAI1 and enable PLLSAI1 output clock(s).
+ * @param PLLSAI1 pointer to an RCC_PLLSAI1InitTypeDef structure that
+ * contains the configuration parameters N & R as well as PLLSAI1 output clock(s)
+ *
+ * @note PLLSAI1 is temporary disable to apply new parameters
+ *
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef RCCEx_PLLSAI1_ConfigNR(RCC_PLLSAI1InitTypeDef *PLLSAI1)
+{
+ uint32_t tickstart;
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* check for PLLSAI1 Parameters used to output PLLSAI1CLK */
+ assert_param(IS_RCC_PLLN_VALUE(PLLSAI1->PLLN));
+ assert_param(IS_RCC_PLLR_VALUE(PLLSAI1->PLLR));
+ assert_param(IS_RCC_PLLSAI1CLOCKOUT_VALUE(PLLSAI1->PLLSAI1ClockOut));
+
+ /* Disable the PLLSAI1 */
+ __HAL_RCC_PLLSAI1_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLLSAI1 is ready to be updated */
+ while (LL_RCC_PLLSAI1_IsReady() != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
+ {
+ status = HAL_TIMEOUT;
+ break;
+ }
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Configure the PLLSAI1 Multiplication factor N */
+ __HAL_RCC_PLLSAI1_MULN_CONFIG(PLLSAI1->PLLN);
+ /* Configure the PLLSAI1 Division factor R */
+ __HAL_RCC_PLLSAI1_DIVR_CONFIG(PLLSAI1->PLLR);
+
+ /* Enable the PLLSAI1 again by setting PLLSAI1ON to 1*/
+ __HAL_RCC_PLLSAI1_ENABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLLSAI1 is ready */
+ while (LL_RCC_PLLSAI1_IsReady() != 1U)
+ {
+ if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
+ {
+ status = HAL_TIMEOUT;
+ break;
+ }
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Configure the PLLSAI1 Clock output(s) */
+ __HAL_RCC_PLLSAI1CLKOUT_ENABLE(PLLSAI1->PLLSAI1ClockOut);
+ }
+ }
+
+ return status;
+}
+#endif /* SAI1 */
+
+/**
+ * @brief Return PLL clock (PLLPCLK) frequency used for SAI domain
+ * @retval PLLPCLK clock frequency (in Hz)
+ */
+static uint32_t RCC_PLL_GetFreqDomain_P(void)
+{
+ uint32_t pllinputfreq;
+ uint32_t pllsource;
+
+ /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI Value / PLLM) * PLLN
+ SAI Domain clock = PLL_VCO / PLLP
+ */
+ pllsource = LL_RCC_PLL_GetMainSource();
+
+ switch (pllsource)
+ {
+ case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
+ pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
+ break;
+
+ case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
+ pllinputfreq = HSI_VALUE;
+ break;
+
+ case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
+ if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
+ {
+ pllinputfreq = HSE_VALUE / 2U;
+ }
+ else
+ {
+ pllinputfreq = HSE_VALUE;
+ }
+ break;
+
+ default:
+ pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
+ break;
+ }
+ return __LL_RCC_CALC_PLLCLK_ADC_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
+ LL_RCC_PLL_GetN(), LL_RCC_PLL_GetP());
+}
+
+/**
+ * @brief Return PLL clock (PLLQCLK) frequency used for 48 MHz domain
+ * @retval PLLQCLK clock frequency (in Hz)
+ */
+static uint32_t RCC_PLL_GetFreqDomain_Q(void)
+{
+ uint32_t pllinputfreq;
+ uint32_t pllsource;
+
+ /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLN
+ 48M Domain clock = PLL_VCO / PLLQ
+ */
+ pllsource = LL_RCC_PLL_GetMainSource();
+
+ switch (pllsource)
+ {
+ case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
+ pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
+ break;
+
+ case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
+ pllinputfreq = HSI_VALUE;
+ break;
+
+ case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
+ if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
+ {
+ pllinputfreq = HSE_VALUE / 2U;
+ }
+ else
+ {
+ pllinputfreq = HSE_VALUE;
+ }
+
+ break;
+
+ default:
+ pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
+ break;
+ }
+ return __LL_RCC_CALC_PLLCLK_48M_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
+ LL_RCC_PLL_GetN(), LL_RCC_PLL_GetQ());
+}
+
+#if defined(SAI1)
+/**
+ * @brief Return PLLSAI1 clock (PLLSAI1RCLK) frequency used for ADC domain
+ * @retval PLLSAI1RCLK clock frequency (in Hz)
+ */
+static uint32_t RCC_PLLSAI1_GetFreqDomain_R(void)
+{
+ uint32_t pllinputfreq;
+ uint32_t pllsource;
+
+ /* PLLSAI1_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLSAI1N */
+ /* 48M Domain clock = PLLSAI1_VCO / PLLSAI1R */
+ pllsource = LL_RCC_PLL_GetMainSource();
+
+ switch (pllsource)
+ {
+ case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLLSAI1 clock source */
+ pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
+ break;
+
+ case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLLSAI1 clock source */
+ pllinputfreq = HSI_VALUE;
+ break;
+
+ case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLLSAI1 clock source */
+ if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
+ {
+ pllinputfreq = HSE_VALUE / 2U;
+ }
+ else
+ {
+ pllinputfreq = HSE_VALUE;
+ }
+ break;
+
+ default:
+ pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
+ break;
+ }
+ return __LL_RCC_CALC_PLLSAI1_ADC_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
+ LL_RCC_PLLSAI1_GetN(), LL_RCC_PLLSAI1_GetR());
+}
+
+/**
+ * @brief Return PLLSAI1 clock (PLLSAI1PCLK) frequency used for SAI domain
+ * @retval PLLSAI1PCLK clock frequency (in Hz)
+ */
+static uint32_t RCC_PLLSAI1_GetFreqDomain_P(void)
+{
+ uint32_t pllinputfreq;
+ uint32_t pllsource;
+
+ /* PLLSAI1_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLSAI1N */
+ /* SAI Domain clock = PLLSAI1_VCO / PLLSAI1P */
+ pllsource = LL_RCC_PLL_GetMainSource();
+
+ switch (pllsource)
+ {
+ case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLLSAI1 clock source */
+ pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
+ break;
+
+ case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLLSAI1 clock source */
+ pllinputfreq = HSI_VALUE;
+ break;
+
+ case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLLSAI1 clock source */
+ if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
+ {
+ pllinputfreq = HSE_VALUE / 2U;
+ }
+ else
+ {
+ pllinputfreq = HSE_VALUE;
+ }
+ break;
+
+ default:
+ pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
+ break;
+ }
+ return __LL_RCC_CALC_PLLSAI1_SAI_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
+ LL_RCC_PLLSAI1_GetN(), LL_RCC_PLLSAI1_GetP());
+}
+
+/**
+ * @brief Return PLLSAI1 clock (PLLSAI1QCLK) frequency used for 48Mhz domain
+ * @retval PLLSAI1QCLK clock frequency (in Hz)
+ */
+static uint32_t RCC_PLLSAI1_GetFreqDomain_Q(void)
+{
+ uint32_t pllinputfreq;
+ uint32_t pllsource;
+
+ /* PLLSAI1_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLSAI1N */
+ /* 48M Domain clock = PLLSAI1_VCO / PLLSAI1Q */
+ pllsource = LL_RCC_PLL_GetMainSource();
+
+ switch (pllsource)
+ {
+ case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLLSAI1 clock source */
+ pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
+ break;
+
+ case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLLSAI1 clock source */
+ pllinputfreq = HSI_VALUE;
+ break;
+
+ case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLLSAI1 clock source */
+ if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
+ {
+ pllinputfreq = HSE_VALUE / 2U;
+ }
+ else
+ {
+ pllinputfreq = HSE_VALUE;
+ }
+ break;
+
+ default:
+ pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
+ break;
+ }
+ return __LL_RCC_CALC_PLLSAI1_48M_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
+ LL_RCC_PLLSAI1_GetN(), LL_RCC_PLLSAI1_GetQ());
+}
+#endif /* SAI1 */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_RCC_MODULE_ENABLED */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */