diff options
Diffstat (limited to 'firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src')
19 files changed, 26472 insertions, 0 deletions
diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal.c new file mode 100644 index 0000000..c848af1 --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal.c @@ -0,0 +1,852 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal.c + * @author MCD Application Team + * @brief HAL module driver. + * This is the common part of the HAL initialization + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The common HAL driver contains a set of generic and common APIs that can be + used by the PPP peripheral drivers and the user to start using the HAL. + [..] + The HAL contains two APIs' categories: + (+) Common HAL APIs + (+) Services HAL APIs + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @addtogroup HAL + * @brief HAL module driver + * @{ + */ + +#ifdef HAL_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @defgroup HAL_Private_Constants HAL Private Constants + * @{ + */ +/** + * @brief STM32WBxx HAL Driver version number + */ +#define __STM32WBxx_HAL_VERSION_MAIN (0x01U) /*!< [31:24] main version */ +#define __STM32WBxx_HAL_VERSION_SUB1 (0x0EU) /*!< [23:16] sub1 version */ +#define __STM32WBxx_HAL_VERSION_SUB2 (0x06U) /*!< [15:8] sub2 version */ +#define __STM32WBxx_HAL_VERSION_RC (0x00U) /*!< [7:0] release candidate */ +#define __STM32WBxx_HAL_VERSION ((__STM32WBxx_HAL_VERSION_MAIN << 24U)\ + |(__STM32WBxx_HAL_VERSION_SUB1 << 16U)\ + |(__STM32WBxx_HAL_VERSION_SUB2 << 8U )\ + |(__STM32WBxx_HAL_VERSION_RC)) + +#if defined(VREFBUF) +#define VREFBUF_TIMEOUT_VALUE 10U /* 10 ms */ +#endif /* VREFBUF */ + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Exported variables ---------------------------------------------------------*/ +/** @defgroup HAL_Exported_Variables HAL Exported Variables + * @{ + */ +__IO uint32_t uwTick; +uint32_t uwTickPrio = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */ +HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT; /* 1KHz */ +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup HAL_Exported_Functions + * @{ + */ + +/** @addtogroup HAL_Exported_Functions_Group1 + * @brief HAL Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### HAL Initialization and Configuration functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the Flash interface the NVIC allocation and initial time base + clock configuration. + (+) De-initialize common part of the HAL. + (+) Configure the time base source to have 1ms time base with a dedicated + Tick interrupt priority. + (++) SysTick timer is used by default as source of time base, but user + can eventually implement his proper time base source (a general purpose + timer for example or other time source), keeping in mind that Time base + duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and + handled in milliseconds basis. + (++) Time base configuration function (HAL_InitTick ()) is called automatically + at the beginning of the program after reset by HAL_Init() or at any time + when clock is configured, by HAL_RCC_ClockConfig(). + (++) Source of time base is configured to generate interrupts at regular + time intervals. Care must be taken if HAL_Delay() is called from a + peripheral ISR process, the Tick interrupt line must have higher priority + (numerically lower) than the peripheral interrupt. Otherwise the caller + ISR process will be blocked. + (++) functions affecting time base configurations are declared as __weak + to make override possible in case of other implementations in user file. +@endverbatim + * @{ + */ + +/** + * @brief This function is used to initialize the HAL Library; it must be the first + * instruction to be executed in the main program (before to call any other + * HAL function), it performs the following: + * Configure the Flash prefetch, instruction and Data caches. + * Configures the SysTick to generate an interrupt each 1 millisecond, + * which is clocked by the MSI (at this stage, the clock is not yet + * configured and thus the system is running from the internal MSI at 4 MHz). + * Set NVIC Group Priority to 4. + * Calls the HAL_MspInit() callback function defined in user file + * "stm32wbxx_hal_msp.c" to do the global low level hardware initialization + * + * @note SysTick is used as time base for the HAL_Delay() function, the application + * need to ensure that the SysTick time base is always set to 1 millisecond + * to have correct HAL operation. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_Init(void) +{ + HAL_StatusTypeDef status = HAL_OK; + /* Configure Flash prefetch, Instruction cache, Data cache */ + /* Default configuration at reset is: */ + /* - Prefetch disabled */ + /* - Instruction cache enabled */ + /* - Data cache enabled */ +#if (INSTRUCTION_CACHE_ENABLE == 0U) + __HAL_FLASH_INSTRUCTION_CACHE_DISABLE(); +#endif /* INSTRUCTION_CACHE_ENABLE */ + +#if (DATA_CACHE_ENABLE == 0U) + __HAL_FLASH_DATA_CACHE_DISABLE(); +#endif /* DATA_CACHE_ENABLE */ + +#if (PREFETCH_ENABLE != 0U) + __HAL_FLASH_PREFETCH_BUFFER_ENABLE(); +#endif /* PREFETCH_ENABLE */ + + /* Set Interrupt Group Priority */ + HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4); + + /* Use SysTick as time base source and configure 1ms tick (default clock after Reset is MSI) */ + if (HAL_InitTick(TICK_INT_PRIORITY) != HAL_OK) + { + status = HAL_ERROR; + } + else + { + /* Init the low level hardware */ + HAL_MspInit(); + } + + /* Return function status */ + return status; +} + +/** + * @brief This function de-Initializes common part of the HAL and stops the source of time base. + * @note This function is optional. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DeInit(void) +{ + /* Reset of all peripherals */ + __HAL_RCC_APB1_FORCE_RESET(); + __HAL_RCC_APB1_RELEASE_RESET(); + + __HAL_RCC_APB2_FORCE_RESET(); + __HAL_RCC_APB2_RELEASE_RESET(); + + __HAL_RCC_APB3_FORCE_RESET(); + __HAL_RCC_APB3_RELEASE_RESET(); + + __HAL_RCC_AHB1_FORCE_RESET(); + __HAL_RCC_AHB1_RELEASE_RESET(); + + __HAL_RCC_AHB2_FORCE_RESET(); + __HAL_RCC_AHB2_RELEASE_RESET(); + + __HAL_RCC_AHB3_FORCE_RESET(); + __HAL_RCC_AHB3_RELEASE_RESET(); + + /* De-Init the low level hardware */ + HAL_MspDeInit(); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initialize the MSP. + * @retval None + */ +__weak void HAL_MspInit(void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the MSP. + * @retval None + */ +__weak void HAL_MspDeInit(void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief This function configures the source of the time base: + * The time source is configured to have 1ms time base with a dedicated + * Tick interrupt priority. + * @note This function is called automatically at the beginning of program after + * reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig(). + * @note In the default implementation, SysTick timer is the source of time base. + * It is used to generate interrupts at regular time intervals. + * Care must be taken if HAL_Delay() is called from a peripheral ISR process, + * The SysTick interrupt must have higher priority (numerically lower) + * than the peripheral interrupt. Otherwise the caller ISR process will be blocked. + * The function is declared as __weak to be overwritten in case of other + * implementation in user file. + * @param TickPriority Tick interrupt priority. + * @retval HAL status + */ +__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority) +{ + HAL_StatusTypeDef status = HAL_OK; + + if ((uint32_t)uwTickFreq != 0U) + { + /*Configure the SysTick to have interrupt in 1ms time basis*/ + if (HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / (1000U / (uint32_t)uwTickFreq)) == 0U) + { + /* Configure the SysTick IRQ priority */ + if (TickPriority < (1UL << __NVIC_PRIO_BITS)) + { + HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U); + uwTickPrio = TickPriority; + } + else + { + status = HAL_ERROR; + } + } + else + { + status = HAL_ERROR; + } + } + else + { + status = HAL_ERROR; + } + + /* Return function status */ + return status; +} + +/** + * @} + */ + +/** @addtogroup HAL_Exported_Functions_Group2 + * @brief HAL Control functions + * +@verbatim + =============================================================================== + ##### HAL Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Provide a tick value in millisecond + (+) Provide a blocking delay in millisecond + (+) Suspend the time base source interrupt + (+) Resume the time base source interrupt + (+) Get the HAL API driver version + (+) Get the device revision identifier + (+) Get the device identifier + (+) Get the unique device identifier + +@endverbatim + * @{ + */ + +/** + * @brief This function is called to increment a global variable "uwTick" + * used as application time base. + * @note In the default implementation, this variable is incremented each 1ms + * in SysTick ISR. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @retval None + */ +__weak void HAL_IncTick(void) +{ + uwTick += (uint32_t)uwTickFreq; +} + +/** + * @brief Provides a tick value in millisecond. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @retval tick value + */ +__weak uint32_t HAL_GetTick(void) +{ + return uwTick; +} + +/** + * @brief This function returns a tick priority. + * @retval tick priority + */ +uint32_t HAL_GetTickPrio(void) +{ + return uwTickPrio; +} + +/** + * @brief Set new tick Freq. + * @retval Status + */ +HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq) +{ + HAL_StatusTypeDef status = HAL_OK; + HAL_TickFreqTypeDef prevTickFreq; + + assert_param(IS_TICKFREQ(Freq)); + + if (uwTickFreq != Freq) + { + /* Back up uwTickFreq frequency */ + prevTickFreq = uwTickFreq; + + /* Update uwTickFreq global variable used by HAL_InitTick() */ + uwTickFreq = Freq; + + /* Apply the new tick Freq */ + status = HAL_InitTick(uwTickPrio); + + if (status != HAL_OK) + { + /* Restore previous tick frequency */ + uwTickFreq = prevTickFreq; + } + } + + return status; +} + +/** + * @brief Return tick frequency. + * @retval Tick frequency. + * Value of @ref HAL_TickFreqTypeDef. + */ +HAL_TickFreqTypeDef HAL_GetTickFreq(void) +{ + return uwTickFreq; +} + +/** + * @brief This function provides minimum delay (in milliseconds) based + * on variable incremented. + * @note In the default implementation , SysTick timer is the source of time base. + * It is used to generate interrupts at regular time intervals where uwTick + * is incremented. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @param Delay specifies the delay time length, in milliseconds. + * @retval None + */ +__weak void HAL_Delay(uint32_t Delay) +{ + uint32_t tickstart = HAL_GetTick(); + uint32_t wait = Delay; + + /* Add a freq to guarantee minimum wait */ + if (wait < HAL_MAX_DELAY) + { + wait += (uint32_t)(uwTickFreq); + } + + while ((HAL_GetTick() - tickstart) < wait) + { + } +} + + +/** + * @brief Suspend Tick increment. + * @note In the default implementation , SysTick timer is the source of time base. It is + * used to generate interrupts at regular time intervals. Once HAL_SuspendTick() + * is called, the SysTick interrupt will be disabled and so Tick increment + * is suspended. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @retval None + */ +__weak void HAL_SuspendTick(void) +{ + /* Disable SysTick Interrupt */ + CLEAR_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk); +} + +/** + * @brief Resume Tick increment. + * @note In the default implementation , SysTick timer is the source of time base. It is + * used to generate interrupts at regular time intervals. Once HAL_ResumeTick() + * is called, the SysTick interrupt will be enabled and so Tick increment + * is resumed. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @retval None + */ +__weak void HAL_ResumeTick(void) +{ + /* Enable SysTick Interrupt */ + SET_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk); +} + +/** + * @brief Returns the HAL revision + * @retval version : 0xXYZR (8bits for each decimal, R for RC) + */ +uint32_t HAL_GetHalVersion(void) +{ + return __STM32WBxx_HAL_VERSION; +} + +/** + * @brief Returns the device revision identifier. + * @retval Device revision identifier + */ +uint32_t HAL_GetREVID(void) +{ + return (LL_DBGMCU_GetRevisionID()); +} + +/** + * @brief Returns the device identifier. + * @retval Device identifier + */ +uint32_t HAL_GetDEVID(void) +{ + return (LL_DBGMCU_GetDeviceID()); +} + +/** + * @brief Return the first word of the unique device identifier (UID based on 96 bits) + * @retval Device identifier + */ +uint32_t HAL_GetUIDw0(void) +{ + return (READ_REG(*((uint32_t *)UID_BASE))); +} + +/** + * @brief Return the second word of the unique device identifier (UID based on 96 bits) + * @retval Device identifier + */ +uint32_t HAL_GetUIDw1(void) +{ + return (READ_REG(*((uint32_t *)(UID_BASE + 4U)))); +} + +/** + * @brief Return the third word of the unique device identifier (UID based on 96 bits) + * @retval Device identifier + */ +uint32_t HAL_GetUIDw2(void) +{ + return (READ_REG(*((uint32_t *)(UID_BASE + 8U)))); +} + +/** + * @} + */ + +/** @addtogroup HAL_Exported_Functions_Group3 + * @brief HAL Debug functions + * +@verbatim + =============================================================================== + ##### HAL Debug functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Enable/Disable Debug module during SLEEP mode + (+) Enable/Disable Debug module during STOP mode + (+) Enable/Disable Debug module during STANDBY mode + +@endverbatim + * @{ + */ + +/** + * @brief Enable the Debug Module during SLEEP mode + * @retval None + */ +void HAL_DBGMCU_EnableDBGSleepMode(void) +{ + LL_DBGMCU_EnableDBGSleepMode(); +} + +/** + * @brief Disable the Debug Module during SLEEP mode + * @retval None + */ +void HAL_DBGMCU_DisableDBGSleepMode(void) +{ + LL_DBGMCU_DisableDBGSleepMode(); +} + +/** + * @brief Enable the Debug Module during STOP mode + * @retval None + */ +void HAL_DBGMCU_EnableDBGStopMode(void) +{ + LL_DBGMCU_EnableDBGStopMode(); +} + +/** + * @brief Disable the Debug Module during STOP mode + * @retval None + */ +void HAL_DBGMCU_DisableDBGStopMode(void) +{ + LL_DBGMCU_DisableDBGStopMode(); +} + +/** + * @brief Enable the Debug Module during STANDBY mode + * @retval None + */ +void HAL_DBGMCU_EnableDBGStandbyMode(void) +{ + LL_DBGMCU_EnableDBGStandbyMode(); +} + +/** + * @brief Disable the Debug Module during STANDBY mode + * @retval None + */ +void HAL_DBGMCU_DisableDBGStandbyMode(void) +{ + LL_DBGMCU_DisableDBGStandbyMode(); +} + +/** + * @} + */ + +/** @defgroup HAL_Exported_Functions_Group4 HAL System Configuration functions + * @brief HAL System Configuration functions + * +@verbatim + =============================================================================== + ##### HAL system configuration functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Start a hardware SRAM2 erase operation + (+) Disable CPU2 SRAM fetch (execution) + (+) Configure the Voltage reference buffer + (+) Enable/Disable the Voltage reference buffer + (+) Enable/Disable the I/O analog switch voltage booster + (+) Enable/Disable the access for security IP (AES1, AES2, PKA, RNG) + (+) Enable/Disable the access for security IP (AES2, PKA, RNG) + +@endverbatim + * @{ + */ + +/** + * @brief Start a hardware SRAM2 erase operation. + * @note As long as SRAM2 is not erased the SRAM2ER bit will be set. + * This bit is automatically reset at the end of the SRAM2 erase operation. + * @retval None + */ +void HAL_SYSCFG_SRAM2Erase(void) +{ + /* unlock the write protection of the SRAM2ER bit */ + __HAL_SYSCFG_SRAM2_WRP_UNLOCK(); + /* Starts a hardware SRAM2 erase operation*/ + __HAL_SYSCFG_SRAM2_ERASE(); +} + +/** + * @brief Disable CPU2 SRAM fetch (execution) (This bit can be set by Firmware + * and will only be reset by a Hardware reset, including a reset after Standby.) + * @note Firmware writing 0 has no effect. + * @retval None + */ +void HAL_SYSCFG_DisableSRAMFetch(void) +{ + LL_SYSCFG_DisableSRAMFetch(); +} + +/** + * @brief Check if CPU2 SRAM fetch is enabled + * @retval State of bit (1 or 0). + */ +uint32_t HAL_SYSCFG_IsEnabledSRAMFetch(void) +{ + return (LL_SYSCFG_IsEnabledSRAMFetch()); +} + +#if defined(VREFBUF) +/** + * @brief Configure the internal voltage reference buffer voltage scale. + * @param VoltageScaling specifies the output voltage to achieve + * This parameter can be one of the following values: + * @arg @ref SYSCFG_VREFBUF_VOLTAGE_SCALE0 : VREF_OUT1 around 2.048 V. + * This requires VDDA equal to or higher than 2.4 V. + * @arg @ref SYSCFG_VREFBUF_VOLTAGE_SCALE1 : VREF_OUT1 around 2.5 V. + * This requires VDDA equal to or higher than 2.8 V. + * @note Retrieve the TrimmingValue from factory located at + * VREFBUF_SC0_CAL_ADDR or VREFBUF_SC1_CAL_ADDR addresses. + * @retval None + */ +void HAL_SYSCFG_VREFBUF_VoltageScalingConfig(uint32_t VoltageScaling) +{ + uint32_t TrimmingValue; + + /* Check the parameters */ + assert_param(IS_SYSCFG_VREFBUF_VOLTAGE_SCALE(VoltageScaling)); + + LL_VREFBUF_SetVoltageScaling(VoltageScaling); + + /* Restrieve Calibration data and store them into trimming field */ + if (VoltageScaling == SYSCFG_VREFBUF_VOLTAGE_SCALE0) + { + TrimmingValue = ((uint32_t) * VREFBUF_SC0_CAL_ADDR) & 0x3FU; + } + else + { + TrimmingValue = ((uint32_t) * VREFBUF_SC1_CAL_ADDR) & 0x3FU; + } + assert_param(IS_SYSCFG_VREFBUF_TRIMMING(TrimmingValue)); + + HAL_SYSCFG_VREFBUF_TrimmingConfig(TrimmingValue); +} + +/** + * @brief Configure the internal voltage reference buffer high impedance mode. + * @param Mode specifies the high impedance mode + * This parameter can be one of the following values: + * @arg @ref SYSCFG_VREFBUF_HIGH_IMPEDANCE_DISABLE : VREF+ pin is internally connect to VREFINT output. + * @arg @ref SYSCFG_VREFBUF_HIGH_IMPEDANCE_ENABLE : VREF+ pin is high impedance. + * @retval HAL_OK/HAL_TIMEOUT + */ +void HAL_SYSCFG_VREFBUF_HighImpedanceConfig(uint32_t Mode) +{ + + /* Check the parameters */ + assert_param(IS_SYSCFG_VREFBUF_HIGH_IMPEDANCE(Mode)); + + MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_HIZ, Mode); +} + +/** + * @brief Tune the Internal Voltage Reference buffer (VREFBUF). + * @note Each VrefBuf voltage scale is calibrated in production for each device, + * data stored in flash memory. + * Function @ref HAL_SYSCFG_VREFBUF_VoltageScalingConfig retrieves and + * applies this calibration data as trimming value at each scale change. + * Therefore, optionally, function @ref HAL_SYSCFG_VREFBUF_TrimmingConfig + * can be used in a second time to fine tune the trimming. + * @param TrimmingValue specifies trimming code for VREFBUF calibration + * This parameter can be a number between Min_Data = 0x00 and Max_Data = 0x3F + * @retval None + */ +void HAL_SYSCFG_VREFBUF_TrimmingConfig(uint32_t TrimmingValue) +{ + /* Check the parameters */ + assert_param(IS_SYSCFG_VREFBUF_TRIMMING(TrimmingValue)); + + LL_VREFBUF_SetTrimming(TrimmingValue); + +} + +/** + * @brief Enable the Internal Voltage Reference buffer (VREFBUF). + * @retval HAL_OK/HAL_TIMEOUT + */ +HAL_StatusTypeDef HAL_SYSCFG_EnableVREFBUF(void) +{ + uint32_t tickstart; + + LL_VREFBUF_Enable(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait for VRR bit */ + while (READ_BIT(VREFBUF->CSR, VREFBUF_CSR_VRR) == 0U) + { + if ((HAL_GetTick() - tickstart) > VREFBUF_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + return HAL_OK; +} + +/** + * @brief Disable the Internal Voltage Reference buffer (VREFBUF). + * + * @retval None + */ +void HAL_SYSCFG_DisableVREFBUF(void) +{ + LL_VREFBUF_Disable(); +} +#endif /* VREFBUF */ + +/** + * @brief Enable the I/O analog switch voltage booster + * + * @retval None + */ +void HAL_SYSCFG_EnableIOBooster(void) +{ + LL_SYSCFG_EnableAnalogBooster(); +} + +/** + * @brief Disable the I/O analog switch voltage booster + * + * @retval None + */ +void HAL_SYSCFG_DisableIOBooster(void) +{ + LL_SYSCFG_DisableAnalogBooster(); +} + +#if defined(SYSCFG_CFGR1_ANASWVDD) +/** + * @brief Enable the I/O analog switch supplied by VDD + * @note To be used when I/O analog switch voltage booster is not enabled + * @retval None + */ +void HAL_SYSCFG_EnableIOVdd(void) +{ + LL_SYSCFG_EnableAnalogGpioSwitch(); +} + +/** + * @brief Disable the I/O analog switch supplied by VDD + * + * @retval None + */ +void HAL_SYSCFG_DisableIOVdd(void) +{ + LL_SYSCFG_DisableAnalogGpioSwitch(); +} +#endif /* SYSCFG_CFGR1_ANASWVDD */ + +/** + * @brief Enable the access for security IP + * @note When the system is secure (ESE = 1), this register provides write access security and can + * only be written by the CPU2. A write access from the CPU1 will be ignored and a bus error + * is generated. + * @param SecurityAccess This parameter can be a combination of the following values: + * @arg @ref HAL_SYSCFG_SECURE_ACCESS_AES1 + * @arg @ref HAL_SYSCFG_SECURE_ACCESS_AES2 + * @arg @ref HAL_SYSCFG_SECURE_ACCESS_PKA + * @arg @ref HAL_SYSCFG_SECURE_ACCESS_RNG + * @retval None + */ +void HAL_SYSCFG_EnableSecurityAccess(uint32_t SecurityAccess) +{ + /* Check the parameters */ + assert_param(IS_SYSCFG_SECURITY_ACCESS(SecurityAccess)); + + LL_SYSCFG_EnableSecurityAccess(SecurityAccess); +} + +/** + * @brief Disable the access for security IP + * @note When the system is secure (ESE = 1), this register provides write access security and can + * only be written by the CPU2. A write access from the CPU1 will be ignored and a bus error + * is generated. + * @param SecurityAccess This parameter can be a combination of the following values: + * @arg @ref HAL_SYSCFG_SECURE_ACCESS_AES1 + * @arg @ref HAL_SYSCFG_SECURE_ACCESS_AES2 + * @arg @ref HAL_SYSCFG_SECURE_ACCESS_PKA + * @arg @ref HAL_SYSCFG_SECURE_ACCESS_RNG + * @retval None + */ +void HAL_SYSCFG_DisableSecurityAccess(uint32_t SecurityAccess) +{ + /* Check the parameters */ + assert_param(IS_SYSCFG_SECURITY_ACCESS(SecurityAccess)); + + LL_SYSCFG_DisableSecurityAccess(SecurityAccess); +} + +/** + * @brief Indicate if access for security IP is enabled + * @param SecurityAccess This parameter can be one of the following values: + * @arg @ref HAL_SYSCFG_SECURE_ACCESS_AES1 + * @arg @ref HAL_SYSCFG_SECURE_ACCESS_AES2 + * @arg @ref HAL_SYSCFG_SECURE_ACCESS_PKA + * @arg @ref HAL_SYSCFG_SECURE_ACCESS_RNG + * @retval State of bit (1 or 0). + */ +uint32_t HAL_SYSCFG_IsEnabledSecurityAccess(uint32_t SecurityAccess) +{ + return (LL_SYSCFG_IsEnabledSecurityAccess(SecurityAccess)); +} +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_cortex.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_cortex.c new file mode 100644 index 0000000..5c34a39 --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_cortex.c @@ -0,0 +1,505 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_cortex.c + * @author MCD Application Team + * @brief CORTEX HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the CORTEX: + * + Initialization and Configuration functions + * + Peripheral Control functions + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + *** How to configure Interrupts using CORTEX HAL driver *** + =========================================================== + [..] + This section provides functions allowing to configure the NVIC interrupts (IRQ). + The Cortex M0+ exceptions are managed by CMSIS functions. + (#) Enable and Configure the priority of the selected IRQ Channels. + The priority can be 0..3. + + -@- Lower priority values gives higher priority. + -@- Priority Order: + (#@) Lowest priority. + (#@) Lowest hardware priority (IRQn position). + + (#) Configure the priority of the selected IRQ Channels using HAL_NVIC_SetPriority() + + (#) Enable the selected IRQ Channels using HAL_NVIC_EnableIRQ() + + -@- Negative value of IRQn_Type are not allowed. + + *** How to configure Systick using CORTEX HAL driver *** + ======================================================== + [..] + Setup SysTick Timer for time base. + + (+) The HAL_SYSTICK_Config() function calls the SysTick_Config() function which + is a CMSIS function that: + (++) Configures the SysTick Reload register with value passed as function parameter. + (++) Configures the SysTick IRQ priority to the lowest value (0x03). + (++) Resets the SysTick Counter register. + (++) Configures the SysTick Counter clock source to be Core Clock Source (HCLK). + (++) Enables the SysTick Interrupt. + (++) Starts the SysTick Counter. + + (+) You can change the SysTick Clock source to be HCLK_Div8 by calling the macro + __HAL_CORTEX_SYSTICKCLK_CONFIG(SYSTICK_CLKSOURCE_HCLK_DIV8) just after the + HAL_SYSTICK_Config() function call. The __HAL_CORTEX_SYSTICKCLK_CONFIG() macro is defined + inside the stm32wbxx_hal_cortex.h file. + + (+) You can change the SysTick IRQ priority by calling the + HAL_NVIC_SetPriority(SysTick_IRQn,...) function just after the HAL_SYSTICK_Config() function + call. The HAL_NVIC_SetPriority() call the NVIC_SetPriority() function which is a CMSIS function. + + (+) To adjust the SysTick time base, use the following formula: + + Reload Value = SysTick Counter Clock (Hz) x Desired Time base (s) + (++) Reload Value is the parameter to be passed for HAL_SYSTICK_Config() function + (++) Reload Value should not exceed 0xFFFFFF + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @addtogroup CORTEX + * @{ + */ + +#ifdef HAL_CORTEX_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup CORTEX_Exported_Functions + * @{ + */ + + +/** @addtogroup CORTEX_Exported_Functions_Group1 + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and Configuration functions ##### + ============================================================================== + [..] + This section provides the CORTEX HAL driver functions allowing to configure Interrupts + SysTick functionalities + +@endverbatim + * @{ + */ + +/** + * @brief Set the priority grouping field (pre-emption priority and subpriority) + * using the required unlock sequence. + * @param PriorityGroup The priority grouping bits length. + * This parameter can be one of the following values: + * @arg NVIC_PRIORITYGROUP_0: 0 bit for pre-emption priority, + * 4 bits for subpriority + * @arg NVIC_PRIORITYGROUP_1: 1 bit for pre-emption priority, + * 3 bits for subpriority + * @arg NVIC_PRIORITYGROUP_2: 2 bits for pre-emption priority, + * 2 bits for subpriority + * @arg NVIC_PRIORITYGROUP_3: 3 bits for pre-emption priority, + * 1 bit for subpriority + * @arg NVIC_PRIORITYGROUP_4: 4 bits for pre-emption priority, + * 0 bit for subpriority + * @note When the NVIC_PriorityGroup_0 is selected, IRQ pre-emption is no more possible. + * The pending IRQ priority will be managed only by the subpriority. + * @retval None + */ +void HAL_NVIC_SetPriorityGrouping(uint32_t PriorityGroup) +{ + /* Check the parameters */ + assert_param(IS_NVIC_PRIORITY_GROUP(PriorityGroup)); + + /* Set the PRIGROUP[10:8] bits according to the PriorityGroup parameter value */ + NVIC_SetPriorityGrouping(PriorityGroup); +} + +/** + * @brief Set the priority of an interrupt. + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32wbxxxx.h)) + * @param PreemptPriority The pre-emption priority for the IRQn channel. + * This parameter can be a value between 0 and 15 + * A lower priority value indicates a higher priority + * @param SubPriority the subpriority level for the IRQ channel. + * This parameter can be a value between 0 and 15 + * A lower priority value indicates a higher priority. + * @retval None + */ +void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority) +{ + uint32_t prioritygroup; + + /* Check the parameters */ + assert_param(IS_NVIC_SUB_PRIORITY(SubPriority)); + assert_param(IS_NVIC_PREEMPTION_PRIORITY(PreemptPriority)); + + prioritygroup = NVIC_GetPriorityGrouping(); + + NVIC_SetPriority(IRQn, NVIC_EncodePriority(prioritygroup, PreemptPriority, SubPriority)); +} + +/** + * @brief Enable a device specific interrupt in the NVIC interrupt controller. + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32wbxxxx.h)) + * @retval None + */ +void HAL_NVIC_EnableIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Enable interrupt */ + NVIC_EnableIRQ(IRQn); +} + +/** + * @brief Disable a device specific interrupt in the NVIC interrupt controller. + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32wbxxxx.h)) + * @retval None + */ +void HAL_NVIC_DisableIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Disable interrupt */ + NVIC_DisableIRQ(IRQn); +} + +/** + * @brief Initiate a system reset request to reset the MCU. + * @retval None + */ +void HAL_NVIC_SystemReset(void) +{ + /* System Reset */ + NVIC_SystemReset(); +} + +/** + * @brief Initialize the System Timer with interrupt enabled and start the System Tick Timer (SysTick): + * Counter is in free running mode to generate periodic interrupts. + * @param TicksNumb Specifies the ticks Number of ticks between two interrupts. + * @retval status: - 0 Function succeeded. + * - 1 Function failed. + */ +uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb) +{ + return SysTick_Config(TicksNumb); +} +/** + * @} + */ + +/** @addtogroup CORTEX_Exported_Functions_Group2 + * @brief Cortex control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control the CORTEX + (NVIC, SYSTICK, MPU) functionalities. + + +@endverbatim + * @{ + */ + + +/** + * @brief Get the priority grouping field from the NVIC Interrupt Controller. + * @retval Priority grouping field (SCB->AIRCR [10:8] PRIGROUP field) + */ +uint32_t HAL_NVIC_GetPriorityGrouping(void) +{ + /* Get the PRIGROUP[10:8] field value */ + return NVIC_GetPriorityGrouping(); +} + +/** + * @brief Get the priority of an interrupt. + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32wbxxxx.h)) + * @param PriorityGroup the priority grouping bits length. + * This parameter can be one of the following values: + * @arg NVIC_PRIORITYGROUP_0: 0 bit for pre-emption priority, + * 4 bits for subpriority + * @arg NVIC_PRIORITYGROUP_1: 1 bit for pre-emption priority, + * 3 bits for subpriority + * @arg NVIC_PRIORITYGROUP_2: 2 bits for pre-emption priority, + * 2 bits for subpriority + * @arg NVIC_PRIORITYGROUP_3: 3 bits for pre-emption priority, + * 1 bit for subpriority + * @arg NVIC_PRIORITYGROUP_4: 4 bits for pre-emption priority, + * 0 bit for subpriority + * @param pPreemptPriority Pointer on the Preemptive priority value (starting from 0). + * @param pSubPriority Pointer on the Subpriority value (starting from 0). + * @retval None + */ +void HAL_NVIC_GetPriority(IRQn_Type IRQn, uint32_t PriorityGroup, uint32_t *pPreemptPriority, uint32_t *pSubPriority) +{ + /* Check the parameters */ + assert_param(IS_NVIC_PRIORITY_GROUP(PriorityGroup)); + /* Get priority for Cortex-M system or device specific interrupts */ + NVIC_DecodePriority(NVIC_GetPriority(IRQn), PriorityGroup, pPreemptPriority, pSubPriority); +} + +/** + * @brief Set Pending bit of an external interrupt. + * @param IRQn External interrupt number + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32wbxxxx.h)) + * @retval None + */ +void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Set interrupt pending */ + NVIC_SetPendingIRQ(IRQn); +} + +/** + * @brief Get Pending Interrupt (read the pending register in the NVIC + * and return the pending bit for the specified interrupt). + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32wbxxxx.h)) + * @retval status: - 0 Interrupt status is not pending. + * - 1 Interrupt status is pending. + */ +uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Return 1 if pending else 0 */ + return NVIC_GetPendingIRQ(IRQn); +} + +/** + * @brief Clear the pending bit of an external interrupt. + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32wbxxxx.h)) + * @retval None + */ +void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Clear pending interrupt */ + NVIC_ClearPendingIRQ(IRQn); +} + +/** + * @brief Configure the SysTick clock source. + * @param CLKSource specifies the SysTick clock source. + * This parameter can be one of the following values: + * @arg SYSTICK_CLKSOURCE_HCLK_DIV8: AHB clock divided by 8 selected as SysTick clock source. + * @arg SYSTICK_CLKSOURCE_HCLK: AHB clock selected as SysTick clock source. + * @retval None + */ +void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource) +{ + /* Check the parameters */ + assert_param(IS_SYSTICK_CLK_SOURCE(CLKSource)); + if (CLKSource == SYSTICK_CLKSOURCE_HCLK) + { + SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK; + } + else + { + SysTick->CTRL &= ~SYSTICK_CLKSOURCE_HCLK; + } +} + +/** + * @brief Handle SYSTICK interrupt request. + * @retval None + */ +void HAL_SYSTICK_IRQHandler(void) +{ + HAL_SYSTICK_Callback(); +} + +/** + * @brief SYSTICK callback. + * @retval None + */ +__weak void HAL_SYSTICK_Callback(void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SYSTICK_Callback could be implemented in the user file + */ +} + +#if (__MPU_PRESENT == 1U) +/** + * @brief Disables the MPU + * @retval None + */ +void HAL_MPU_Disable(void) +{ + /* Make sure outstanding transfers are done */ + __DMB(); + + /* Disable fault exceptions */ + SCB->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk; + + /* Disable the MPU and clear the control register*/ + MPU->CTRL = 0U; +} + +/** + * @brief Enable the MPU. + * @param MPU_Control: Specifies the control mode of the MPU during hard fault, + * NMI, FAULTMASK and privileged access to the default memory + * This parameter can be one of the following values: + * @arg MPU_HFNMI_PRIVDEF_NONE + * @arg MPU_HARDFAULT_NMI + * @arg MPU_PRIVILEGED_DEFAULT + * @arg MPU_HFNMI_PRIVDEF + * @retval None + */ +void HAL_MPU_Enable(uint32_t MPU_Control) +{ + /* Enable the MPU */ + MPU->CTRL = (MPU_Control | MPU_CTRL_ENABLE_Msk); + + /* Enable fault exceptions */ + SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk; + + /* Ensure MPU setting take effects */ + __DSB(); + __ISB(); +} + +/** + * @brief Enable the MPU Region. + * @retval None + */ +void HAL_MPU_EnableRegion(uint32_t RegionNumber) +{ + /* Check the parameters */ + assert_param(IS_MPU_REGION_NUMBER(RegionNumber)); + + /* Set the Region number */ + MPU->RNR = RegionNumber; + + /* Enable the Region */ + SET_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk); +} + +/** + * @brief Disable the MPU Region. + * @retval None + */ +void HAL_MPU_DisableRegion(uint32_t RegionNumber) +{ + /* Check the parameters */ + assert_param(IS_MPU_REGION_NUMBER(RegionNumber)); + + /* Set the Region number */ + MPU->RNR = RegionNumber; + + /* Disable the Region */ + CLEAR_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk); +} + +/** + * @brief Initialize and configure the Region and the memory to be protected. + * @param MPU_Init Pointer to a MPU_Region_InitTypeDef structure that contains + * the initialization and configuration information. + * @retval None + */ +void HAL_MPU_ConfigRegion(MPU_Region_InitTypeDef *MPU_Init) +{ + /* Check the parameters */ + assert_param(IS_MPU_REGION_NUMBER(MPU_Init->Number)); + assert_param(IS_MPU_REGION_ENABLE(MPU_Init->Enable)); + assert_param(IS_MPU_INSTRUCTION_ACCESS(MPU_Init->DisableExec)); + assert_param(IS_MPU_REGION_PERMISSION_ATTRIBUTE(MPU_Init->AccessPermission)); + assert_param(IS_MPU_TEX_LEVEL(MPU_Init->TypeExtField)); + assert_param(IS_MPU_ACCESS_SHAREABLE(MPU_Init->IsShareable)); + assert_param(IS_MPU_ACCESS_CACHEABLE(MPU_Init->IsCacheable)); + assert_param(IS_MPU_ACCESS_BUFFERABLE(MPU_Init->IsBufferable)); + assert_param(IS_MPU_SUB_REGION_DISABLE(MPU_Init->SubRegionDisable)); + assert_param(IS_MPU_REGION_SIZE(MPU_Init->Size)); + + /* Set the Region number */ + MPU->RNR = MPU_Init->Number; + + /* Disable the Region */ + CLEAR_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk); + + /* Apply configuration */ + MPU->RBAR = MPU_Init->BaseAddress; + MPU->RASR = ((uint32_t)MPU_Init->DisableExec << MPU_RASR_XN_Pos) | + ((uint32_t)MPU_Init->AccessPermission << MPU_RASR_AP_Pos) | + ((uint32_t)MPU_Init->TypeExtField << MPU_RASR_TEX_Pos) | + ((uint32_t)MPU_Init->IsShareable << MPU_RASR_S_Pos) | + ((uint32_t)MPU_Init->IsCacheable << MPU_RASR_C_Pos) | + ((uint32_t)MPU_Init->IsBufferable << MPU_RASR_B_Pos) | + ((uint32_t)MPU_Init->SubRegionDisable << MPU_RASR_SRD_Pos) | + ((uint32_t)MPU_Init->Size << MPU_RASR_SIZE_Pos) | + ((uint32_t)MPU_Init->Enable << MPU_RASR_ENABLE_Pos); +} +#endif /* __MPU_PRESENT */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_CORTEX_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_dma.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_dma.c new file mode 100644 index 0000000..316e71f --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_dma.c @@ -0,0 +1,1120 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_dma.c + * @author MCD Application Team + * @brief DMA HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Direct Memory Access (DMA) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral State and errors functions + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Enable and configure the peripheral to be connected to the DMA Channel + (except for internal SRAM / FLASH memories: no initialization is + necessary). Please refer to the Reference manual for connection between peripherals + and DMA requests. + + (#) For a given Channel, program the required configuration through the following parameters: + Channel request, Transfer Direction, Source and Destination data formats, + Circular or Normal mode, Channel Priority level, Source and Destination Increment mode + using HAL_DMA_Init() function. + + Prior to HAL_DMA_Init the peripheral clock shall be enabled for both DMA & DMAMUX + thanks to: + (##) DMA1 or DMA2: __HAL_RCC_DMA1_CLK_ENABLE() or __HAL_RCC_DMA2_CLK_ENABLE() ; + (##) DMAMUX1: __HAL_RCC_DMAMUX1_CLK_ENABLE(); + + (#) Use HAL_DMA_GetState() function to return the DMA state and HAL_DMA_GetError() in case of error + detection. + + (#) Use HAL_DMA_Abort() function to abort the current transfer + + -@- In Memory-to-Memory transfer mode, Circular mode is not allowed. + + *** Polling mode IO operation *** + ================================= + [..] + (+) Use HAL_DMA_Start() to start DMA transfer after the configuration of Source + address and destination address and the Length of data to be transferred + (+) Use HAL_DMA_PollForTransfer() to poll for the end of current transfer, in this + case a fixed Timeout can be configured by User depending from his application. + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Configure the DMA interrupt priority using HAL_NVIC_SetPriority() + (+) Enable the DMA IRQ handler using HAL_NVIC_EnableIRQ() + (+) Use HAL_DMA_Start_IT() to start DMA transfer after the configuration of + Source address and destination address and the Length of data to be transferred. + In this case the DMA interrupt is configured + (+) Use HAL_DMA_IRQHandler() called under DMA_IRQHandler() Interrupt subroutine + (+) At the end of data transfer HAL_DMA_IRQHandler() function is executed and user can + add his own function to register callbacks with HAL_DMA_RegisterCallback(). + + *** DMA HAL driver macros list *** + ============================================= + [..] + Below the list of macros in DMA HAL driver. + + (+) __HAL_DMA_ENABLE: Enable the specified DMA Channel. + (+) __HAL_DMA_DISABLE: Disable the specified DMA Channel. + (+) __HAL_DMA_GET_FLAG: Get the DMA Channel pending flags. + (+) __HAL_DMA_CLEAR_FLAG: Clear the DMA Channel pending flags. + (+) __HAL_DMA_ENABLE_IT: Enable the specified DMA Channel interrupts. + (+) __HAL_DMA_DISABLE_IT: Disable the specified DMA Channel interrupts. + (+) __HAL_DMA_GET_IT_SOURCE: Check whether the specified DMA Channel interrupt is enabled or not. + + [..] + (@) You can refer to the DMA HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @defgroup DMA DMA + * @brief DMA HAL module driver + * @{ + */ + +#ifdef HAL_DMA_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup DMA_Private_Functions DMA Private Functions + * @{ + */ +static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength); +static void DMA_CalcDMAMUXChannelBaseAndMask(DMA_HandleTypeDef *hdma); +static void DMA_CalcDMAMUXRequestGenBaseAndMask(DMA_HandleTypeDef *hdma); + +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ + +/** @defgroup DMA_Exported_Functions DMA Exported Functions + * @{ + */ + +/** @defgroup DMA_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and de-initialization functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] + This section provides functions allowing to initialize the DMA Channel source + and destination addresses, incrementation and data sizes, transfer direction, + circular/normal mode selection, memory-to-memory mode selection and Channel priority value. + [..] + The HAL_DMA_Init() function follows the DMA configuration procedures as described in + reference manual. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the DMA according to the specified + * parameters in the DMA_InitTypeDef and initialize the associated handle. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma) +{ + uint32_t tmp; + + /* Check the DMA handle allocation */ + if (hdma == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); + assert_param(IS_DMA_DIRECTION(hdma->Init.Direction)); + assert_param(IS_DMA_PERIPHERAL_INC_STATE(hdma->Init.PeriphInc)); + assert_param(IS_DMA_MEMORY_INC_STATE(hdma->Init.MemInc)); + assert_param(IS_DMA_PERIPHERAL_DATA_SIZE(hdma->Init.PeriphDataAlignment)); + assert_param(IS_DMA_MEMORY_DATA_SIZE(hdma->Init.MemDataAlignment)); + assert_param(IS_DMA_MODE(hdma->Init.Mode)); + assert_param(IS_DMA_PRIORITY(hdma->Init.Priority)); + + assert_param(IS_DMA_ALL_REQUEST(hdma->Init.Request)); + +#if defined(DMA2) + /* Compute the channel index */ + if ((uint32_t)(hdma->Instance) < (uint32_t)(DMA2_Channel1)) + { + /* DMA1 */ + hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2U; + hdma->DmaBaseAddress = DMA1; + } + else + { + /* DMA2 */ + hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA2_Channel1) / ((uint32_t)DMA2_Channel2 - (uint32_t)DMA2_Channel1)) << 2U; + hdma->DmaBaseAddress = DMA2; + } +#else + /* DMA1 */ + hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2U; + hdma->DmaBaseAddress = DMA1; +#endif /* DMA2 */ + + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Get the CR register value */ + tmp = hdma->Instance->CCR; + + /* Clear PL, MSIZE, PSIZE, MINC, PINC, CIRC, DIR and MEM2MEM bits */ + tmp &= ((uint32_t)~(DMA_CCR_PL | DMA_CCR_MSIZE | DMA_CCR_PSIZE | + DMA_CCR_MINC | DMA_CCR_PINC | DMA_CCR_CIRC | + DMA_CCR_DIR | DMA_CCR_MEM2MEM)); + + /* Prepare the DMA Channel configuration */ + tmp |= hdma->Init.Direction | + hdma->Init.PeriphInc | hdma->Init.MemInc | + hdma->Init.PeriphDataAlignment | hdma->Init.MemDataAlignment | + hdma->Init.Mode | hdma->Init.Priority; + + /* Write to DMA Channel CR register */ + hdma->Instance->CCR = tmp; + + /* Initialize parameters for DMAMUX channel : + DMAmuxChannel, DMAmuxChannelStatus and DMAmuxChannelStatusMask + */ + DMA_CalcDMAMUXChannelBaseAndMask(hdma); + + if (hdma->Init.Direction == DMA_MEMORY_TO_MEMORY) + { + /* if memory to memory force the request to 0*/ + hdma->Init.Request = DMA_REQUEST_MEM2MEM; + } + + /* Set peripheral request to DMAMUX channel */ + hdma->DMAmuxChannel->CCR = (hdma->Init.Request & DMAMUX_CxCR_DMAREQ_ID); + + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + if (((hdma->Init.Request > 0U) && (hdma->Init.Request <= DMA_REQUEST_GENERATOR3))) + { + /* Initialize parameters for DMAMUX request generator : + DMAmuxRequestGen, DMAmuxRequestGenStatus and DMAmuxRequestGenStatusMask + */ + DMA_CalcDMAMUXRequestGenBaseAndMask(hdma); + + /* Reset the DMAMUX request generator register*/ + hdma->DMAmuxRequestGen->RGCR = 0U; + + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + else + { + hdma->DMAmuxRequestGen = 0U; + hdma->DMAmuxRequestGenStatus = 0U; + hdma->DMAmuxRequestGenStatusMask = 0U; + } + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Initialize the DMA state*/ + hdma->State = HAL_DMA_STATE_READY; + + /* Allocate lock resource and initialize it */ + hdma->Lock = HAL_UNLOCKED; + + return HAL_OK; +} + +/** + * @brief DeInitialize the DMA peripheral. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma) +{ + + /* Check the DMA handle allocation */ + if (NULL == hdma) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); + + /* Disable the selected DMA Channelx */ + __HAL_DMA_DISABLE(hdma); + +#if defined(DMA2) + /* Compute the channel index */ + if ((uint32_t)(hdma->Instance) < (uint32_t)(DMA2_Channel1)) + { + /* DMA1 */ + hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2U; + hdma->DmaBaseAddress = DMA1; + } + else + { + /* DMA2 */ + hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA2_Channel1) / ((uint32_t)DMA2_Channel2 - (uint32_t)DMA2_Channel1)) << 2U; + hdma->DmaBaseAddress = DMA2; + } +#else + /* DMA1 */ + hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2U; + hdma->DmaBaseAddress = DMA1; +#endif /* DMA2 */ + + /* Reset DMA Channel control register */ + hdma->Instance->CCR = 0U; + + /* Clear all flags */ + hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << (hdma->ChannelIndex & 0x1cU)); + + /* Initialize parameters for DMAMUX channel : + DMAmuxChannel, DMAmuxChannelStatus and DMAmuxChannelStatusMask */ + + DMA_CalcDMAMUXChannelBaseAndMask(hdma); + + /* Reset the DMAMUX channel that corresponds to the DMA channel */ + hdma->DMAmuxChannel->CCR = 0U; + + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + /* Reset Request generator parameters if any */ + if (((hdma->Init.Request > 0U) && (hdma->Init.Request <= DMA_REQUEST_GENERATOR3))) + { + /* Initialize parameters for DMAMUX request generator : + DMAmuxRequestGen, DMAmuxRequestGenStatus and DMAmuxRequestGenStatusMask + */ + DMA_CalcDMAMUXRequestGenBaseAndMask(hdma); + + /* Reset the DMAMUX request generator register*/ + hdma->DMAmuxRequestGen->RGCR = 0U; + + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + + hdma->DMAmuxRequestGen = 0U; + hdma->DMAmuxRequestGenStatus = 0U; + hdma->DMAmuxRequestGenStatusMask = 0U; + + /* Clean callbacks */ + hdma->XferCpltCallback = NULL; + hdma->XferHalfCpltCallback = NULL; + hdma->XferErrorCallback = NULL; + hdma->XferAbortCallback = NULL; + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Initialize the DMA state */ + hdma->State = HAL_DMA_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hdma); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup DMA_Exported_Functions_Group2 Input and Output operation functions + * @brief Input and Output operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure the source, destination address and data length and Start DMA transfer + (+) Configure the source, destination address and data length and + Start DMA transfer with interrupt + (+) Abort DMA transfer + (+) Poll for transfer complete + (+) Handle DMA interrupt request + +@endverbatim + * @{ + */ + +/** + * @brief Start the DMA Transfer. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @param SrcAddress The source memory Buffer address + * @param DstAddress The destination memory Buffer address + * @param DataLength The length of data to be transferred from source to destination + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_DMA_BUFFER_SIZE(DataLength)); + + /* Process locked */ + __HAL_LOCK(hdma); + + if (HAL_DMA_STATE_READY == hdma->State) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Disable the peripheral */ + __HAL_DMA_DISABLE(hdma); + + /* Configure the source, destination address and the data length & clear flags*/ + DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength); + + /* Enable the Peripheral */ + __HAL_DMA_ENABLE(hdma); + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + status = HAL_BUSY; + } + return status; +} + +/** + * @brief Start the DMA Transfer with interrupt enabled. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @param SrcAddress The source memory Buffer address + * @param DstAddress The destination memory Buffer address + * @param DataLength The length of data to be transferred from source to destination + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, + uint32_t DataLength) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_DMA_BUFFER_SIZE(DataLength)); + + /* Process locked */ + __HAL_LOCK(hdma); + + if (HAL_DMA_STATE_READY == hdma->State) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Disable the peripheral */ + __HAL_DMA_DISABLE(hdma); + + /* Configure the source, destination address and the data length & clear flags*/ + DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength); + + /* Enable the transfer complete interrupt */ + /* Enable the transfer Error interrupt */ + if (NULL != hdma->XferHalfCpltCallback) + { + /* Enable the Half transfer complete interrupt as well */ + __HAL_DMA_ENABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE)); + } + else + { + __HAL_DMA_DISABLE_IT(hdma, DMA_IT_HT); + __HAL_DMA_ENABLE_IT(hdma, (DMA_IT_TC | DMA_IT_TE)); + } + + /* Check if DMAMUX Synchronization is enabled*/ + if ((hdma->DMAmuxChannel->CCR & DMAMUX_CxCR_SE) != 0U) + { + /* Enable DMAMUX sync overrun IT*/ + hdma->DMAmuxChannel->CCR |= DMAMUX_CxCR_SOIE; + } + + if (hdma->DMAmuxRequestGen != 0U) + { + /* if using DMAMUX request generator, enable the DMAMUX request generator overrun IT*/ + /* enable the request gen overrun IT*/ + hdma->DMAmuxRequestGen->RGCR |= DMAMUX_RGxCR_OIE; + } + + /* Enable the Peripheral */ + __HAL_DMA_ENABLE(hdma); + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Remain BUSY */ + status = HAL_BUSY; + } + return status; +} + +/** + * @brief Abort the DMA Transfer. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma) +{ + + /* Check the DMA peripheral handle */ + if (NULL == hdma) + { + return HAL_ERROR; + } + + /* Check the DMA peripheral state */ + if (hdma->State != HAL_DMA_STATE_BUSY) + { + hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + return HAL_ERROR; + } + else + { + /* Disable DMA IT */ + __HAL_DMA_DISABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE)); + + /* disable the DMAMUX sync overrun IT*/ + hdma->DMAmuxChannel->CCR &= ~DMAMUX_CxCR_SOIE; + + /* Disable the channel */ + __HAL_DMA_DISABLE(hdma); + + /* Clear all flags */ + hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << (hdma->ChannelIndex & 0x1cU)); + + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + if (hdma->DMAmuxRequestGen != 0U) + { + /* if using DMAMUX request generator, disable the DMAMUX request generator overrun IT*/ + /* disable the request gen overrun IT*/ + hdma->DMAmuxRequestGen->RGCR &= ~DMAMUX_RGxCR_OIE; + + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + } + + return HAL_OK; +} + +/** + * @brief Aborts the DMA Transfer in Interrupt mode. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (HAL_DMA_STATE_BUSY != hdma->State) + { + /* no transfer ongoing */ + hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER; + + status = HAL_ERROR; + } + else + { + /* Disable DMA IT */ + __HAL_DMA_DISABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE)); + + /* Disable the channel */ + __HAL_DMA_DISABLE(hdma); + + /* disable the DMAMUX sync overrun IT*/ + hdma->DMAmuxChannel->CCR &= ~DMAMUX_CxCR_SOIE; + + /* Clear all flags */ + hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << (hdma->ChannelIndex & 0x1cU)); + + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + if (hdma->DMAmuxRequestGen != 0U) + { + /* if using DMAMUX request generator, disable the DMAMUX request generator overrun IT*/ + /* disable the request gen overrun IT*/ + hdma->DMAmuxRequestGen->RGCR &= ~DMAMUX_RGxCR_OIE; + + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Call User Abort callback */ + if (hdma->XferAbortCallback != NULL) + { + hdma->XferAbortCallback(hdma); + } + } + return status; +} + +/** + * @brief Polling for transfer complete. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @param CompleteLevel Specifies the DMA level complete. + * @param Timeout Timeout duration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, HAL_DMA_LevelCompleteTypeDef CompleteLevel, + uint32_t Timeout) +{ + uint32_t temp; + uint32_t tickstart; + + if (HAL_DMA_STATE_BUSY != hdma->State) + { + /* no transfer ongoing */ + hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER; + __HAL_UNLOCK(hdma); + return HAL_ERROR; + } + + /* Polling mode not supported in circular mode */ + if ((hdma->Instance->CCR & DMA_CCR_CIRC) != 0U) + { + hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED; + return HAL_ERROR; + } + + /* Get the level transfer complete flag */ + if (HAL_DMA_FULL_TRANSFER == CompleteLevel) + { + /* Transfer Complete flag */ + temp = DMA_FLAG_TC1 << (hdma->ChannelIndex & 0x1cU); + } + else + { + /* Half Transfer Complete flag */ + temp = DMA_FLAG_HT1 << (hdma->ChannelIndex & 0x1cU); + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while ((hdma->DmaBaseAddress->ISR & temp) == 0U) + { + if ((hdma->DmaBaseAddress->ISR & (DMA_FLAG_TE1 << (hdma->ChannelIndex & 0x1CU))) != 0U) + { + /* When a DMA transfer error occurs */ + /* A hardware clear of its EN bits is performed */ + /* Clear all flags */ + hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << (hdma->ChannelIndex & 0x1cU)); + + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_TE; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + return HAL_ERROR; + } + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_TIMEOUT; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + return HAL_ERROR; + } + } + } + + /*Check for DMAMUX Request generator (if used) overrun status */ + if (hdma->DMAmuxRequestGen != 0U) + { + /* if using DMAMUX request generator Check for DMAMUX request generator overrun */ + if ((hdma->DMAmuxRequestGenStatus->RGSR & hdma->DMAmuxRequestGenStatusMask) != 0U) + { + /* Disable the request gen overrun interrupt */ + hdma->DMAmuxRequestGen->RGCR |= DMAMUX_RGxCR_OIE; + + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_REQGEN; + } + } + + /* Check for DMAMUX Synchronization overrun */ + if ((hdma->DMAmuxChannelStatus->CSR & hdma->DMAmuxChannelStatusMask) != 0U) + { + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_SYNC; + } + + if (HAL_DMA_FULL_TRANSFER == CompleteLevel) + { + /* Clear the transfer complete flag */ + hdma->DmaBaseAddress->IFCR = (DMA_FLAG_TC1 << (hdma->ChannelIndex & 0x1cU)); + + /* Process unlocked */ + __HAL_UNLOCK(hdma); + + /* The selected Channelx EN bit is cleared (DMA is disabled and + all transfers are complete) */ + hdma->State = HAL_DMA_STATE_READY; + } + else + { + /* Clear the half transfer complete flag */ + hdma->DmaBaseAddress->IFCR = (DMA_FLAG_HT1 << (hdma->ChannelIndex & 0x1cU)); + } + + return HAL_OK; +} + +/** + * @brief Handle DMA interrupt request. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval None + */ +void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma) +{ + uint32_t flag_it = hdma->DmaBaseAddress->ISR; + uint32_t source_it = hdma->Instance->CCR; + + /* Half Transfer Complete Interrupt management ******************************/ + if (((flag_it & (DMA_FLAG_HT1 << (hdma->ChannelIndex & 0x1cU))) != 0U) && ((source_it & DMA_IT_HT) != 0U)) + { + /* Disable the half transfer interrupt if the DMA mode is not CIRCULAR */ + if ((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U) + { + /* Disable the half transfer interrupt */ + __HAL_DMA_DISABLE_IT(hdma, DMA_IT_HT); + } + /* Clear the half transfer complete flag */ + hdma->DmaBaseAddress->IFCR = (DMA_ISR_HTIF1 << (hdma->ChannelIndex & 0x1CU)); + + /* DMA peripheral state is not updated in Half Transfer */ + /* but in Transfer Complete case */ + + if (hdma->XferHalfCpltCallback != NULL) + { + /* Half transfer callback */ + hdma->XferHalfCpltCallback(hdma); + } + } + + /* Transfer Complete Interrupt management ***********************************/ + else if (((flag_it & (DMA_FLAG_TC1 << (hdma->ChannelIndex & 0x1cU))) != 0U) && ((source_it & DMA_IT_TC) != 0U)) + { + if ((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U) + { + /* Disable the transfer complete and error interrupt */ + __HAL_DMA_DISABLE_IT(hdma, DMA_IT_TE | DMA_IT_TC); + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + } + /* Clear the transfer complete flag */ + hdma->DmaBaseAddress->IFCR = (DMA_ISR_TCIF1 << (hdma->ChannelIndex & 0x1cU)); + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + if (hdma->XferCpltCallback != NULL) + { + /* Transfer complete callback */ + hdma->XferCpltCallback(hdma); + } + } + + /* Transfer Error Interrupt management **************************************/ + else if (((flag_it & (DMA_FLAG_TE1 << (hdma->ChannelIndex & 0x1cU))) != 0U) && ((source_it & DMA_IT_TE) != 0U)) + { + /* When a DMA transfer error occurs */ + /* A hardware clear of its EN bits is performed */ + /* Disable ALL DMA IT */ + __HAL_DMA_DISABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE)); + + /* Clear all flags */ + hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << (hdma->ChannelIndex & 0x1cU)); + + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_TE; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + if (hdma->XferErrorCallback != NULL) + { + /* Transfer error callback */ + hdma->XferErrorCallback(hdma); + } + } + else + { + /* Nothing To Do */ + } + return; +} + +/** + * @brief Register callbacks + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @param CallbackID User Callback identifier + * a HAL_DMA_CallbackIDTypeDef ENUM as parameter. + * @param pCallback Pointer to private callback function which has pointer to + * a DMA_HandleTypeDef structure as parameter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_RegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID, void (* pCallback)(DMA_HandleTypeDef *_hdma)) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hdma); + + if (HAL_DMA_STATE_READY == hdma->State) + { + switch (CallbackID) + { + case HAL_DMA_XFER_CPLT_CB_ID: + hdma->XferCpltCallback = pCallback; + break; + + case HAL_DMA_XFER_HALFCPLT_CB_ID: + hdma->XferHalfCpltCallback = pCallback; + break; + + case HAL_DMA_XFER_ERROR_CB_ID: + hdma->XferErrorCallback = pCallback; + break; + + case HAL_DMA_XFER_ABORT_CB_ID: + hdma->XferAbortCallback = pCallback; + break; + + default: + status = HAL_ERROR; + break; + } + } + else + { + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hdma); + + return status; +} + +/** + * @brief UnRegister callbacks + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @param CallbackID User Callback identifier + * a HAL_DMA_CallbackIDTypeDef ENUM as parameter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_UnRegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hdma); + + if (HAL_DMA_STATE_READY == hdma->State) + { + switch (CallbackID) + { + case HAL_DMA_XFER_CPLT_CB_ID: + hdma->XferCpltCallback = NULL; + break; + + case HAL_DMA_XFER_HALFCPLT_CB_ID: + hdma->XferHalfCpltCallback = NULL; + break; + + case HAL_DMA_XFER_ERROR_CB_ID: + hdma->XferErrorCallback = NULL; + break; + + case HAL_DMA_XFER_ABORT_CB_ID: + hdma->XferAbortCallback = NULL; + break; + + case HAL_DMA_XFER_ALL_CB_ID: + hdma->XferCpltCallback = NULL; + hdma->XferHalfCpltCallback = NULL; + hdma->XferErrorCallback = NULL; + hdma->XferAbortCallback = NULL; + break; + + default: + status = HAL_ERROR; + break; + } + } + else + { + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hdma); + + return status; +} + +/** + * @} + */ + + + +/** @defgroup DMA_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief Peripheral State and Errors functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Check the DMA state + (+) Get error code + +@endverbatim + * @{ + */ + +/** + * @brief Return the DMA handle state. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval HAL state + */ +HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma) +{ + /* Return DMA handle state */ + return hdma->State; +} + +/** + * @brief Return the DMA error code. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval DMA Error Code + */ +uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma) +{ + return hdma->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup DMA_Private_Functions + * @{ + */ + +/** + * @brief Sets the DMA Transfer parameter. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @param SrcAddress The source memory Buffer address + * @param DstAddress The destination memory Buffer address + * @param DataLength The length of data to be transferred from source to destination + * @retval HAL status + */ +static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) +{ + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + if (hdma->DMAmuxRequestGen != 0U) + { + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + + /* Clear all flags */ + hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << (hdma->ChannelIndex & 0x1cU)); + + /* Configure DMA Channel data length */ + hdma->Instance->CNDTR = DataLength; + + /* Memory to Peripheral */ + if ((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH) + { + /* Configure DMA Channel destination address */ + hdma->Instance->CPAR = DstAddress; + + /* Configure DMA Channel source address */ + hdma->Instance->CMAR = SrcAddress; + } + /* Peripheral to Memory */ + else + { + /* Configure DMA Channel source address */ + hdma->Instance->CPAR = SrcAddress; + + /* Configure DMA Channel destination address */ + hdma->Instance->CMAR = DstAddress; + } +} + +/** + * @brief Updates the DMA handle with the DMAMUX channel and status mask depending on channel number + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval None + */ +static void DMA_CalcDMAMUXChannelBaseAndMask(DMA_HandleTypeDef *hdma) +{ + uint32_t channel_number; + + /* check if instance is not outside the DMA channel range */ +#if defined(DMA2) + if ((uint32_t)hdma->Instance < (uint32_t)DMA2_Channel1) + { + /* DMA1 */ + hdma->DMAmuxChannel = (DMAMUX1_Channel0 + (hdma->ChannelIndex >> 2U)); + } + else + { + /* DMA2 */ + hdma->DMAmuxChannel = (DMAMUX1_Channel7 + (hdma->ChannelIndex >> 2U)); + } +#else + /* DMA1 */ + hdma->DMAmuxChannel = (DMAMUX1_Channel0 + (hdma->ChannelIndex >> 2U)); +#endif /* DMA2 */ + channel_number = (((uint32_t)hdma->Instance & 0xFFU) - 8U) / 20U; + hdma->DMAmuxChannelStatus = DMAMUX1_ChannelStatus; + + /* Initialize the field DMAmuxChannelStatusMask with the corresponding index of the DMAMUX channel selected for the current ChannelIndex */ + hdma->DMAmuxChannelStatusMask = 1UL << (channel_number & 0x1FU); +} + +/** + * @brief Updates the DMA handle with the DMAMUX request generator params + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval None + */ + +static void DMA_CalcDMAMUXRequestGenBaseAndMask(DMA_HandleTypeDef *hdma) +{ + uint32_t request = hdma->Init.Request & DMAMUX_CxCR_DMAREQ_ID; + + /* DMA Channels are connected to DMAMUX1 request generator blocks*/ + hdma->DMAmuxRequestGen = (DMAMUX_RequestGen_TypeDef *)((uint32_t)(((uint32_t)DMAMUX1_RequestGenerator0) + ((request - 1U) * 4U))); + + hdma->DMAmuxRequestGenStatus = DMAMUX1_RequestGenStatus; + + /* here "Request" is either DMA_REQUEST_GENERATOR0 to DMA_REQUEST_GENERATOR3, i.e. <= 4*/ + hdma->DMAmuxRequestGenStatusMask = 1UL << ((request - 1U) & 0x3U); +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_DMA_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_dma_ex.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_dma_ex.c new file mode 100644 index 0000000..239665c --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_dma_ex.c @@ -0,0 +1,295 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_dma_ex.c + * @author MCD Application Team + * @brief DMA Extension HAL module driver + * This file provides firmware functions to manage the following + * functionalities of the DMA Extension peripheral: + * + Extended features functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The DMA Extension HAL driver can be used as follows: + + (+) Configure the DMA_MUX Synchronization Block using HAL_DMAEx_ConfigMuxSync function. + (+) Configure the DMA_MUX Request Generator Block using HAL_DMAEx_ConfigMuxRequestGenerator function. + Functions HAL_DMAEx_EnableMuxRequestGenerator and HAL_DMAEx_DisableMuxRequestGenerator can then be used + to respectively enable/disable the request generator. + + (+) To handle the DMAMUX Interrupts, the function HAL_DMAEx_MUX_IRQHandler should be called from + the DMAMUX IRQ handler i.e DMAMUX1_OVR_IRQHandler. + As only one interrupt line is available for all DMAMUX channels and request generators , HAL_DMAEx_MUX_IRQHandler should be + called with, as parameter, the appropriate DMA handle as many as used DMAs in the user project + (exception done if a given DMA is not using the DMAMUX SYNC block neither a request generator) + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @defgroup DMAEx DMAEx + * @brief DMA Extended HAL module driver + * @{ + */ + +#ifdef HAL_DMA_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private Constants ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + + +/** @defgroup DMAEx_Exported_Functions DMAEx Exported Functions + * @{ + */ + +/** @defgroup DMAEx_Exported_Functions_Group1 DMAEx Extended features functions + * @brief Extended features functions + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + + (+) Configure the DMAMUX Synchronization Block using HAL_DMAEx_ConfigMuxSync function. + (+) Configure the DMAMUX Request Generator Block using HAL_DMAEx_ConfigMuxRequestGenerator function. + Functions HAL_DMAEx_EnableMuxRequestGenerator and HAL_DMAEx_DisableMuxRequestGenerator can then be used + to respectively enable/disable the request generator. + +@endverbatim + * @{ + */ + +/** + * @brief Configure the DMAMUX synchronization parameters for a given DMA channel (instance). + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA channel. + * @param pSyncConfig Pointer to HAL_DMA_MuxSyncConfigTypeDef : contains the DMAMUX synchronization parameters + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_ConfigMuxSync(DMA_HandleTypeDef *hdma, HAL_DMA_MuxSyncConfigTypeDef *pSyncConfig) +{ + /* Check the parameters */ + assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); + + assert_param(IS_DMAMUX_SYNC_SIGNAL_ID(pSyncConfig->SyncSignalID)); + assert_param(IS_DMAMUX_SYNC_POLARITY(pSyncConfig-> SyncPolarity)); + assert_param(IS_DMAMUX_SYNC_STATE(pSyncConfig->SyncEnable)); + assert_param(IS_DMAMUX_SYNC_EVENT(pSyncConfig->EventEnable)); + assert_param(IS_DMAMUX_SYNC_REQUEST_NUMBER(pSyncConfig->RequestNumber)); + + /*Check if the DMA state is ready */ + if (hdma->State == HAL_DMA_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hdma); + + /* Set the new synchronization parameters (and keep the request ID filled during the Init)*/ + MODIFY_REG(hdma->DMAmuxChannel->CCR, \ + (DMAMUX_CxCR_SYNC_ID | DMAMUX_CxCR_NBREQ | DMAMUX_CxCR_SPOL | DMAMUX_CxCR_SE | DMAMUX_CxCR_EGE), \ + (pSyncConfig->SyncSignalID | \ + ((pSyncConfig->RequestNumber - 1U) << DMAMUX_CxCR_NBREQ_Pos) | \ + pSyncConfig->SyncPolarity | \ + ((uint32_t)pSyncConfig->SyncEnable << DMAMUX_CxCR_SE_Pos) | \ + ((uint32_t)pSyncConfig->EventEnable << DMAMUX_CxCR_EGE_Pos))); + + /* Process UnLocked */ + __HAL_UNLOCK(hdma); + + return HAL_OK; + } + else + { + /*DMA State not Ready*/ + return HAL_ERROR; + } +} + +/** + * @brief Configure the DMAMUX request generator block used by the given DMA channel (instance). + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA channel. + * @param pRequestGeneratorConfig Pointer to HAL_DMA_MuxRequestGeneratorConfigTypeDef : + * contains the request generator parameters. + * + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_ConfigMuxRequestGenerator(DMA_HandleTypeDef *hdma, + HAL_DMA_MuxRequestGeneratorConfigTypeDef *pRequestGeneratorConfig) +{ + /* Check the parameters */ + assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); + + assert_param(IS_DMAMUX_REQUEST_GEN_SIGNAL_ID(pRequestGeneratorConfig->SignalID)); + assert_param(IS_DMAMUX_REQUEST_GEN_POLARITY(pRequestGeneratorConfig->Polarity)); + assert_param(IS_DMAMUX_REQUEST_GEN_REQUEST_NUMBER(pRequestGeneratorConfig->RequestNumber)); + + /* check if the DMA state is ready + and DMA is using a DMAMUX request generator block + */ + if ((hdma->State == HAL_DMA_STATE_READY) && (hdma->DMAmuxRequestGen != 0U)) + { + /* Process Locked */ + __HAL_LOCK(hdma); + + /* Set the request generator new parameters*/ + WRITE_REG(hdma->DMAmuxRequestGen->RGCR, (pRequestGeneratorConfig->SignalID | \ + pRequestGeneratorConfig->Polarity | \ + ((pRequestGeneratorConfig->RequestNumber - 1U) << DMAMUX_RGxCR_GNBREQ_Pos))); + + /* Process UnLocked */ + __HAL_UNLOCK(hdma); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Enable the DMAMUX request generator block used by the given DMA channel (instance). + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA channel. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_EnableMuxRequestGenerator(DMA_HandleTypeDef *hdma) +{ + /* Check the parameters */ + assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); + + /* check if the DMA state is ready + and DMA is using a DMAMUX request generator block + */ + if ((hdma->State != HAL_DMA_STATE_RESET) && (hdma->DMAmuxRequestGen != 0U)) + { + /* Enable the request generator*/ + SET_BIT(hdma->DMAmuxRequestGen->RGCR, DMAMUX_RGxCR_GE); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Disable the DMAMUX request generator block used by the given DMA channel (instance). + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA channel. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_DisableMuxRequestGenerator(DMA_HandleTypeDef *hdma) +{ + /* Check the parameters */ + assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); + + /* check if the DMA state is ready + and DMA is using a DMAMUX request generator block + */ + if ((hdma->State != HAL_DMA_STATE_RESET) && (hdma->DMAmuxRequestGen != 0)) + { + /* Disable the request generator*/ + CLEAR_BIT(hdma->DMAmuxRequestGen->RGCR, DMAMUX_RGxCR_GE); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Handles DMAMUX interrupt request. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA channel. + * @retval None + */ +void HAL_DMAEx_MUX_IRQHandler(DMA_HandleTypeDef *hdma) +{ + /* Check for DMAMUX Synchronization overrun */ + if ((hdma->DMAmuxChannelStatus->CSR & hdma->DMAmuxChannelStatusMask) != 0U) + { + /* Disable the synchro overrun interrupt */ + CLEAR_BIT(hdma->DMAmuxChannel->CCR, DMAMUX_CxCR_SOIE); + + /* Clear the DMAMUX synchro overrun flag */ + WRITE_REG(hdma->DMAmuxChannelStatus->CFR, hdma->DMAmuxChannelStatusMask); + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_SYNC; + + if (hdma->XferErrorCallback != NULL) + { + /* Transfer error callback */ + hdma->XferErrorCallback(hdma); + } + } + + if (hdma->DMAmuxRequestGen != 0U) + { + /* if using a DMAMUX request generator block Check for DMAMUX request generator overrun */ + if ((hdma->DMAmuxRequestGenStatus->RGSR & hdma->DMAmuxRequestGenStatusMask) != 0U) + { + /* Disable the request gen overrun interrupt */ + CLEAR_BIT(hdma->DMAmuxRequestGen->RGCR, DMAMUX_RGxCR_OIE); + + /* Clear the DMAMUX request generator overrun flag */ + WRITE_REG(hdma->DMAmuxRequestGenStatus->RGCFR, hdma->DMAmuxRequestGenStatusMask); + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_REQGEN; + + if (hdma->XferErrorCallback != NULL) + { + /* Transfer error callback */ + hdma->XferErrorCallback(hdma); + } + } + } +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_DMA_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_exti.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_exti.c new file mode 100644 index 0000000..ec29590 --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_exti.c @@ -0,0 +1,634 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_exti.c + * @author MCD Application Team + * @brief EXTI HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the General Purpose Input/Output (EXTI) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### EXTI Peripheral features ##### + ============================================================================== + [..] + (+) Each Exti line can be configured within this driver. + + (+) Exti line can be configured in 3 different modes + (++) Interrupt + (++) Event + (++) Both of them + + (+) Configurable Exti lines can be configured with 3 different triggers + (++) Rising + (++) Falling + (++) Both of them + + (+) When set in interrupt mode, configurable Exti lines have one + interrupt pending register: + (++) Trigger request occurred + + (+) Exti lines 0 to 15 are linked to gpio pin number 0 to 15. Gpio port can + be selected through multiplexer. + + ##### How to use this driver ##### + ============================================================================== + [..] + + (#) Configure the EXTI line using HAL_EXTI_SetConfigLine(). + (++) Choose the interrupt line number by setting "Line" member from + EXTI_ConfigTypeDef structure. + (++) Configure the interrupt and/or event mode using "Mode" member from + EXTI_ConfigTypeDef structure. + (++) For configurable lines, configure rising and/or falling trigger + "Trigger" member from EXTI_ConfigTypeDef structure. + (++) For Exti lines linked to gpio, choose gpio port using "GPIOSel" + member from GPIO_InitTypeDef structure. + + (#) Get current Exti configuration of a dedicated line using + HAL_EXTI_GetConfigLine(). + (++) Provide exiting handle as parameter. + (++) Provide pointer on EXTI_ConfigTypeDef structure as second parameter. + + (#) Clear Exti configuration of a dedicated line using HAL_EXTI_GetConfigLine(). + (++) Provide exiting handle as parameter. + + (#) Register callback to treat Exti interrupts using HAL_EXTI_RegisterCallback(). + (++) Provide exiting handle as first parameter. + (++) Provide which callback will be registered using one value from + EXTI_CallbackIDTypeDef. + (++) Provide callback function pointer. + + (#) Get interrupt pending bit using HAL_EXTI_GetPending(). + + (#) Clear interrupt pending bit using HAL_EXTI_GetPending(). + + (#) Generate software interrupt using HAL_EXTI_GenerateSWI(). + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @addtogroup EXTI + * @{ + */ +/** MISRA C:2012 deviation rule has been granted for following rule: + * Rule-18.1_b - Medium: Array `EXTICR' 1st subscript interval [0,7] may be out + * of bounds [0,3] in following API : + * HAL_EXTI_SetConfigLine + * HAL_EXTI_GetConfigLine + * HAL_EXTI_ClearConfigLine + */ + +#ifdef HAL_EXTI_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private defines ------------------------------------------------------------*/ +/** @defgroup EXTI_Private_Constants EXTI Private Constants + * @{ + */ +#define EXTI_MODE_OFFSET 0x04u /* 0x10: offset between CPU IMR/EMR registers */ +#define EXTI_CONFIG_OFFSET 0x08u /* 0x20: offset between CPU Rising/Falling configuration registers */ +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup EXTI_Exported_Functions + * @{ + */ + +/** @addtogroup EXTI_Exported_Functions_Group1 + * @brief Configuration functions + * +@verbatim + =============================================================================== + ##### Configuration functions ##### + =============================================================================== + +@endverbatim + * @{ + */ + +/** + * @brief Set configuration of a dedicated Exti line. + * @param hexti Exti handle. + * @param pExtiConfig Pointer on EXTI configuration to be set. + * @retval HAL Status. + */ +HAL_StatusTypeDef HAL_EXTI_SetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig) +{ + __IO uint32_t *regaddr; + uint32_t regval; + uint32_t linepos; + uint32_t maskline; + uint32_t offset; + + /* Check null pointer */ + if ((hexti == NULL) || (pExtiConfig == NULL)) + { + return HAL_ERROR; + } + + /* Check parameters */ + assert_param(IS_EXTI_LINE(pExtiConfig->Line)); + assert_param(IS_EXTI_MODE(pExtiConfig->Mode)); + + /* Assign line number to handle */ + hexti->Line = pExtiConfig->Line; + + /* compute line register offset and line mask */ + offset = ((pExtiConfig->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT); + linepos = (pExtiConfig->Line & EXTI_PIN_MASK); + maskline = (1uL << linepos); + + /* Configure triggers for configurable lines */ + if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u) + { + assert_param(IS_EXTI_TRIGGER(pExtiConfig->Trigger)); + + /* Configure rising trigger */ + regaddr = (&EXTI->RTSR1 + (EXTI_CONFIG_OFFSET * offset)); + regval = *regaddr; + + /* Mask or set line */ + if ((pExtiConfig->Trigger & EXTI_TRIGGER_RISING) != 0x00u) + { + regval |= maskline; + } + else + { + regval &= ~maskline; + } + + /* Store rising trigger mode */ + *regaddr = regval; + + /* Configure falling trigger */ + regaddr = (&EXTI->FTSR1 + (EXTI_CONFIG_OFFSET * offset)); + regval = *regaddr; + + /* Mask or set line */ + if ((pExtiConfig->Trigger & EXTI_TRIGGER_FALLING) != 0x00u) + { + regval |= maskline; + } + else + { + regval &= ~maskline; + } + + /* Store falling trigger mode */ + *regaddr = regval; + + /* Configure gpio port selection in case of gpio exti line */ + if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO) + { + assert_param(IS_EXTI_GPIO_PORT(pExtiConfig->GPIOSel)); + assert_param(IS_EXTI_GPIO_PIN(linepos)); + + regval = SYSCFG->EXTICR[linepos >> 2u]; + regval &= ~(SYSCFG_EXTICR1_EXTI0 << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u))); + regval |= (pExtiConfig->GPIOSel << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u))); + SYSCFG->EXTICR[linepos >> 2u] = regval; + } + } + + /* Configure interrupt mode : read current mode */ + regaddr = (&EXTI->IMR1 + (EXTI_MODE_OFFSET * offset)); + regval = *regaddr; + + /* Mask or set line */ + if ((pExtiConfig->Mode & EXTI_MODE_INTERRUPT) != 0x00u) + { + regval |= maskline; + } + else + { + regval &= ~maskline; + } + + /* Store interrupt mode */ + *regaddr = regval; + + /* The event mode cannot be configured if the line does not support it */ + assert_param(((pExtiConfig->Line & EXTI_EVENT) == EXTI_EVENT) || ((pExtiConfig->Mode & EXTI_MODE_EVENT) != EXTI_MODE_EVENT)); + + /* Configure event mode : read current mode */ + regaddr = (&EXTI->EMR1 + (EXTI_MODE_OFFSET * offset)); + regval = *regaddr; + + /* Mask or set line */ + if ((pExtiConfig->Mode & EXTI_MODE_EVENT) != 0x00u) + { + regval |= maskline; + } + else + { + regval &= ~maskline; + } + + /* Store event mode */ + *regaddr = regval; + + return HAL_OK; +} + + +/** + * @brief Get configuration of a dedicated Exti line. + * @param hexti Exti handle. + * @param pExtiConfig Pointer on structure to store Exti configuration. + * @retval HAL Status. + */ +HAL_StatusTypeDef HAL_EXTI_GetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig) +{ + __IO uint32_t *regaddr; + uint32_t regval; + uint32_t linepos; + uint32_t maskline; + uint32_t offset; + + /* Check null pointer */ + if ((hexti == NULL) || (pExtiConfig == NULL)) + { + return HAL_ERROR; + } + + /* Check the parameter */ + assert_param(IS_EXTI_LINE(hexti->Line)); + + /* Store handle line number to configuration structure */ + pExtiConfig->Line = hexti->Line; + + /* compute line register offset and line mask */ + offset = ((pExtiConfig->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT); + linepos = (pExtiConfig->Line & EXTI_PIN_MASK); + maskline = (1uL << linepos); + + /* 1] Get core mode : interrupt */ + regaddr = (&EXTI->IMR1 + (EXTI_MODE_OFFSET * offset)); + regval = *regaddr; + + /* Check if selected line is enable */ + if ((regval & maskline) != 0x00u) + { + pExtiConfig->Mode = EXTI_MODE_INTERRUPT; + } + else + { + pExtiConfig->Mode = EXTI_MODE_NONE; + } + + /* Get event mode */ + regaddr = (&EXTI->EMR1 + (EXTI_MODE_OFFSET * offset)); + regval = *regaddr; + + /* Check if selected line is enable */ + if ((regval & maskline) != 0x00u) + { + pExtiConfig->Mode |= EXTI_MODE_EVENT; + } + + /* Get default Trigger and GPIOSel configuration */ + pExtiConfig->Trigger = EXTI_TRIGGER_NONE; + pExtiConfig->GPIOSel = 0x00u; + + /* 2] Get trigger for configurable lines : rising */ + if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u) + { + regaddr = (&EXTI->RTSR1 + (EXTI_CONFIG_OFFSET * offset)); + regval = *regaddr; + + /* Check if configuration of selected line is enable */ + if ((regval & maskline) != 0x00u) + { + pExtiConfig->Trigger = EXTI_TRIGGER_RISING; + } + + /* Get falling configuration */ + regaddr = (&EXTI->FTSR1 + (EXTI_CONFIG_OFFSET * offset)); + regval = *regaddr; + + /* Check if configuration of selected line is enable */ + if ((regval & maskline) != 0x00u) + { + pExtiConfig->Trigger |= EXTI_TRIGGER_FALLING; + } + + /* Get Gpio port selection for gpio lines */ + if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO) + { + assert_param(IS_EXTI_GPIO_PIN(linepos)); + + regval = SYSCFG->EXTICR[linepos >> 2u]; + pExtiConfig->GPIOSel = (regval >> (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u))) & SYSCFG_EXTICR1_EXTI0; + } + } + + return HAL_OK; +} + + +/** + * @brief Clear whole configuration of a dedicated Exti line. + * @param hexti Exti handle. + * @retval HAL Status. + */ +HAL_StatusTypeDef HAL_EXTI_ClearConfigLine(EXTI_HandleTypeDef *hexti) +{ + __IO uint32_t *regaddr; + uint32_t regval; + uint32_t linepos; + uint32_t maskline; + uint32_t offset; + + /* Check null pointer */ + if (hexti == NULL) + { + return HAL_ERROR; + } + + /* Check the parameter */ + assert_param(IS_EXTI_LINE(hexti->Line)); + + /* compute line register offset and line mask */ + offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT); + linepos = (hexti->Line & EXTI_PIN_MASK); + maskline = (1uL << linepos); + + /* 1] Clear interrupt mode */ + regaddr = (&EXTI->IMR1 + (EXTI_MODE_OFFSET * offset)); + regval = (*regaddr & ~maskline); + *regaddr = regval; + + /* 2] Clear event mode */ + regaddr = (&EXTI->EMR1 + (EXTI_MODE_OFFSET * offset)); + regval = (*regaddr & ~maskline); + *regaddr = regval; + + /* 3] Clear triggers in case of configurable lines */ + if ((hexti->Line & EXTI_CONFIG) != 0x00u) + { + regaddr = (&EXTI->RTSR1 + (EXTI_CONFIG_OFFSET * offset)); + regval = (*regaddr & ~maskline); + *regaddr = regval; + + regaddr = (&EXTI->FTSR1 + (EXTI_CONFIG_OFFSET * offset)); + regval = (*regaddr & ~maskline); + *regaddr = regval; + + /* Get Gpio port selection for gpio lines */ + if ((hexti->Line & EXTI_GPIO) == EXTI_GPIO) + { + assert_param(IS_EXTI_GPIO_PIN(linepos)); + + regval = SYSCFG->EXTICR[linepos >> 2u]; + regval &= ~(SYSCFG_EXTICR1_EXTI0 << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u))); + SYSCFG->EXTICR[linepos >> 2u] = regval; + } + } + + return HAL_OK; +} + + +/** + * @brief Register callback for a dedicaated Exti line. + * @param hexti Exti handle. + * @param CallbackID User callback identifier. + * This parameter can be one of @arg @ref EXTI_CallbackIDTypeDef values. + * @param pPendingCbfn function pointer to be stored as callback. + * @retval HAL Status. + */ +HAL_StatusTypeDef HAL_EXTI_RegisterCallback(EXTI_HandleTypeDef *hexti, EXTI_CallbackIDTypeDef CallbackID, + void (*pPendingCbfn)(void)) +{ + HAL_StatusTypeDef status = HAL_OK; + + switch (CallbackID) + { + case HAL_EXTI_COMMON_CB_ID: + hexti->PendingCallback = pPendingCbfn; + break; + + default: + status = HAL_ERROR; + break; + } + + return status; +} + + +/** + * @brief Store line number as handle private field. + * @param hexti Exti handle. + * @param ExtiLine Exti line number. + * This parameter can be from 0 to @ref EXTI_LINE_NB. + * @retval HAL Status. + */ +HAL_StatusTypeDef HAL_EXTI_GetHandle(EXTI_HandleTypeDef *hexti, uint32_t ExtiLine) +{ + /* Check the parameters */ + assert_param(IS_EXTI_LINE(ExtiLine)); + + /* Check null pointer */ + if (hexti == NULL) + { + return HAL_ERROR; + } + else + { + /* Store line number as handle private field */ + hexti->Line = ExtiLine; + + return HAL_OK; + } +} + + +/** + * @} + */ + +/** @addtogroup EXTI_Exported_Functions_Group2 + * @brief EXTI IO functions. + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + +@endverbatim + * @{ + */ + +/** + * @brief Handle EXTI interrupt request. + * @param hexti Exti handle. + * @retval none. + */ +void HAL_EXTI_IRQHandler(EXTI_HandleTypeDef *hexti) +{ + __IO uint32_t *regaddr; + uint32_t regval; + uint32_t maskline; + uint32_t offset; + + /* Compute line register offset and line mask */ + offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT); + maskline = (1uL << (hexti->Line & EXTI_PIN_MASK)); + + /* Get pending bit */ + regaddr = (&EXTI->PR1 + (EXTI_CONFIG_OFFSET * offset)); + regval = (*regaddr & maskline); + + if (regval != 0x00u) + { + /* Clear pending bit */ + *regaddr = maskline; + + /* Call callback */ + if (hexti->PendingCallback != NULL) + { + hexti->PendingCallback(); + } + } +} + + +/** + * @brief Get interrupt pending bit of a dedicated line. + * @param hexti Exti handle. + * @param Edge Specify which pending edge as to be checked. + * This parameter can be one of the following values: + * @arg @ref EXTI_TRIGGER_RISING_FALLING + * This parameter is kept for compatibility with other series. + * @retval 1 if interrupt is pending else 0. + */ +uint32_t HAL_EXTI_GetPending(EXTI_HandleTypeDef *hexti, uint32_t Edge) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(Edge); + + __IO uint32_t *regaddr; + uint32_t regval; + uint32_t linepos; + uint32_t maskline; + uint32_t offset; + + /* Check parameters */ + assert_param(IS_EXTI_LINE(hexti->Line)); + assert_param(IS_EXTI_CONFIG_LINE(hexti->Line)); + + /* compute line register offset and line mask */ + offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT); + linepos = (hexti->Line & EXTI_PIN_MASK); + maskline = (1uL << linepos); + + /* Get pending bit */ + regaddr = (&EXTI->PR1 + (EXTI_CONFIG_OFFSET * offset)); + + /* return 1 if bit is set else 0 */ + regval = ((*regaddr & maskline) >> linepos); + return regval; +} + + +/** + * @brief Clear interrupt pending bit of a dedicated line. + * @param hexti Exti handle. + * @param Edge Specify which pending edge as to be clear. + * This parameter can be one of the following values: + * @arg @ref EXTI_TRIGGER_RISING_FALLING + * This parameter is kept for compatibility with other series. + * @retval None. + */ +void HAL_EXTI_ClearPending(EXTI_HandleTypeDef *hexti, uint32_t Edge) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(Edge); + + __IO uint32_t *regaddr; + uint32_t maskline; + uint32_t offset; + + /* Check parameters */ + assert_param(IS_EXTI_LINE(hexti->Line)); + assert_param(IS_EXTI_CONFIG_LINE(hexti->Line)); + + /* compute line register offset and line mask */ + offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT); + maskline = (1uL << (hexti->Line & EXTI_PIN_MASK)); + + /* Get pending register address */ + regaddr = (&EXTI->PR1 + (EXTI_CONFIG_OFFSET * offset)); + + /* Clear Pending bit */ + *regaddr = maskline; +} + + +/** + * @brief Generate a software interrupt for a dedicated line. + * @param hexti Exti handle. + * @retval None. + */ +void HAL_EXTI_GenerateSWI(EXTI_HandleTypeDef *hexti) +{ + __IO uint32_t *regaddr; + uint32_t maskline; + uint32_t offset; + + /* Check parameters */ + assert_param(IS_EXTI_LINE(hexti->Line)); + assert_param(IS_EXTI_CONFIG_LINE(hexti->Line)); + + /* compute line register offset and line mask */ + offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT); + maskline = (1uL << (hexti->Line & EXTI_PIN_MASK)); + + regaddr = (&EXTI->SWIER1 + (EXTI_CONFIG_OFFSET * offset)); + *regaddr = maskline; +} + + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_EXTI_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_flash.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_flash.c new file mode 100644 index 0000000..4f2232a --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_flash.c @@ -0,0 +1,743 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_flash.c + * @author MCD Application Team + * @brief FLASH HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the internal FLASH memory: + * + Program operations functions + * + Memory Control functions + * + Peripheral Errors functions + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### FLASH peripheral features ##### + ============================================================================== + + [..] The Flash memory interface manages CPU AHB I-Code and D-Code accesses + to the Flash memory. It implements the erase and program Flash memory operations + and the read and write protection mechanisms. + + [..] The Flash memory interface accelerates code execution with a system of instruction + prefetch and cache lines. + + [..] The FLASH main features are: + (+) Flash memory read operations + (+) Flash memory program/erase operations + (+) Program and Erase suspension + (+) Read / write protections (2 areas per features) + (+) CPU2 Security area + (+) Option bytes programming + (+) Prefetch on CPU1 I-Code and CPU2 S-bus + (+) 32 instruction cache lines of 4*64 bits on I-Code for CPU1 + (+) 8 data cache lines of 4*64 bits on D-Code for CPU1 + (+) 4 instruction cache lines of 1*64 bits on S-bus for CPU2 + (+) 4 data cache lines of 1*64 bits on S-Bus for CPU2 + (+) Error code correction (ECC) : Data in flash are 72-bits word + (8 bits added per double word) + + ##### How to use this driver ##### + ============================================================================== + [..] + This driver provides functions and macros to configure and program the FLASH + memory of all STM32WBxx devices. + + (#) Flash Memory IO Programming functions: + (++) Lock and Unlock the FLASH interface using HAL_FLASH_Unlock() and + HAL_FLASH_Lock() functions + (++) Program functions: double word and fast program (full row programming) + (++) There are two modes of programming: + (+++) Polling mode using HAL_FLASH_Program() function + (+++) Interrupt mode using HAL_FLASH_Program_IT() function + + (#) Interrupts and flags management functions: + (++) Handle FLASH interrupts by calling HAL_FLASH_IRQHandler() + (++) Callback functions are called when the flash operations are finished : + HAL_FLASH_EndOfOperationCallback() when everything is ok, otherwise + HAL_FLASH_OperationErrorCallback() + (++) Get error flag status by calling HAL_GetError() + + (#) Option bytes management functions : + (++) Lock and Unlock the option bytes using HAL_FLASH_OB_Unlock() and + HAL_FLASH_OB_Lock() functions + (++) Launch the reload of the option bytes using HAL_FLASH_OB_Launch() function. + In this case, a reset is generated + + [..] + In addition to these functions, this driver includes a set of macros allowing + to handle the following operations: + (+) Set the latency + (+) Enable/Disable the prefetch buffer + (+) Enable/Disable the suspend program or erase request + (+) Enable/Disable the Instruction cache and the Data cache + (+) Reset the Instruction cache and the Data cache + (+) Enable/Disable the Flash interrupts + (+) Monitor the Flash flags status + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @defgroup FLASH FLASH + * @brief FLASH HAL module driver + * @{ + */ + +#ifdef HAL_FLASH_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private defines -----------------------------------------------------------*/ +/** @addtogroup FLASH_Private_Constants + * @{ + */ +#define FLASH_NB_DOUBLE_WORDS_IN_ROW 64 +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @defgroup FLASH_Private_Variables FLASH Private Variables + * @{ + */ +/** + * @brief Variable used for Program/Erase sectors under interruption + */ +FLASH_ProcessTypeDef pFlash = {.Lock = HAL_UNLOCKED, \ + .ErrorCode = HAL_FLASH_ERROR_NONE, \ + .ProcedureOnGoing = 0U, \ + .Address = 0U, \ + .Page = 0U, \ + .NbPagesToErase = 0U + }; +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup FLASH_Private_Functions FLASH Private Functions + * @{ + */ +static void FLASH_Program_DoubleWord(uint32_t Address, uint64_t Data); +static void FLASH_Program_Fast(uint32_t Address, uint32_t DataAddress); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup FLASH_Exported_Functions FLASH Exported Functions + * @{ + */ + +/** @defgroup FLASH_Exported_Functions_Group1 Programming operation functions + * @brief Programming operation functions + * +@verbatim + =============================================================================== + ##### Programming operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the FLASH + program operations. + +@endverbatim + * @{ + */ + +/** + * @brief Program double word or fast program of a row at a specified address. + * @note Before any operation, it is possible to check there is no operation suspended + * by call HAL_FLASHEx_IsOperationSuspended() + * @param TypeProgram Indicate the way to program at a specified address + * This parameter can be a value of @ref FLASH_TYPE_PROGRAM + * @param Address Specifies the address to be programmed. + * @param Data Specifies the data to be programmed + * This parameter is the data for the double word program and the address where + * are stored the data for the row fast program. + * + * @retval HAL_StatusTypeDef HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data) +{ + HAL_StatusTypeDef status; + + /* Check the parameters */ + assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram)); + assert_param(IS_ADDR_ALIGNED_64BITS(Address)); + assert_param(IS_FLASH_PROGRAM_ADDRESS(Address)); + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Reset error code */ + pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; + + /* Verify that next operation can be proceed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + + if (status == HAL_OK) + { + if (TypeProgram == FLASH_TYPEPROGRAM_DOUBLEWORD) + { + /* Check the parameters */ + assert_param(IS_FLASH_PROGRAM_ADDRESS(Address)); + + /* Program double-word (64-bit) at a specified address */ + FLASH_Program_DoubleWord(Address, Data); + } + else + { + /* Check the parameters */ + assert_param(IS_FLASH_FAST_PROGRAM_ADDRESS(Address)); + + /* Fast program a 64 row double-word (64-bit) at a specified address */ + FLASH_Program_Fast(Address, (uint32_t)Data); + } + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + + /* If the program operation is completed, disable the PG or FSTPG Bit */ + CLEAR_BIT(FLASH->CR, TypeProgram); + } + + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + + /* return status */ + return status; +} + +/** + * @brief Program double word or fast program of a row at a specified address with interrupt enabled. + * @note Before any operation, it is possible to check there is no operation suspended + * by call HAL_FLASHEx_IsOperationSuspended() + * @param TypeProgram Indicate the way to program at a specified address. + * This parameter can be a value of @ref FLASH_TYPE_PROGRAM + * @param Address Specifies the address to be programmed. + * @param Data Specifies the data to be programmed + * This parameter is the data for the double word program and the address where + * are stored the data for the row fast program. + * + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data) +{ + HAL_StatusTypeDef status; + + /* Check the parameters */ + assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram)); + assert_param(IS_ADDR_ALIGNED_64BITS(Address)); + assert_param(IS_FLASH_PROGRAM_ADDRESS(Address)); + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Reset error code */ + pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; + + /* Verify that next operation can be proceed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + + if (status != HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + } + else + { + /* Set internal variables used by the IRQ handler */ + pFlash.ProcedureOnGoing = TypeProgram; + pFlash.Address = Address; + + /* Enable End of Operation and Error interrupts */ + __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP | FLASH_IT_OPERR); + + if (TypeProgram == FLASH_TYPEPROGRAM_DOUBLEWORD) + { + /* Check the parameters */ + assert_param(IS_FLASH_PROGRAM_ADDRESS(Address)); + + /* Program double-word (64-bit) at a specified address */ + FLASH_Program_DoubleWord(Address, Data); + } + else + { + /* Check the parameters */ + assert_param(IS_FLASH_FAST_PROGRAM_ADDRESS(Address)); + + /* Fast program a 64 row double-word (64-bit) at a specified address */ + FLASH_Program_Fast(Address, (uint32_t)Data); + } + } + + /* return status */ + return status; +} + +/** + * @brief Handle FLASH interrupt request. + * @retval None + */ +void HAL_FLASH_IRQHandler(void) +{ + uint32_t param = 0xFFFFFFFFU; + uint32_t error; + + /* Check FLASH operation error flags */ + error = (FLASH->SR & FLASH_FLAG_SR_ERRORS); + + /* Clear Current operation */ + CLEAR_BIT(FLASH->CR, pFlash.ProcedureOnGoing); + + /* A] Set parameter for user or error callbacks */ + /* check operation was a program or erase */ + if ((pFlash.ProcedureOnGoing & (FLASH_TYPEPROGRAM_DOUBLEWORD | FLASH_TYPEPROGRAM_FAST)) != 0U) + { + /* return address being programmed */ + param = pFlash.Address; + } + else if ((pFlash.ProcedureOnGoing & (FLASH_TYPEERASE_PAGES)) != 0U) + { + /* return page number being erased */ + param = pFlash.Page; + } + else + { + /* No Procedure on-going */ + /* Nothing to do, but check error if any */ + } + + /* B] Check errors */ + if (error != 0U) + { + /*Save the error code*/ + pFlash.ErrorCode |= error; + + /* clear error flags */ + __HAL_FLASH_CLEAR_FLAG(error); + + /*Stop the procedure ongoing*/ + pFlash.ProcedureOnGoing = FLASH_TYPENONE; + + /* Error callback */ + HAL_FLASH_OperationErrorCallback(param); + } + + /* C] Check FLASH End of Operation flag */ + if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP)) + { + /* Clear FLASH End of Operation pending bit */ + __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP); + + if (pFlash.ProcedureOnGoing == FLASH_TYPEERASE_PAGES) + { + /* Nb of pages to erased can be decreased */ + pFlash.NbPagesToErase--; + + /* Check if there are still pages to erase*/ + if (pFlash.NbPagesToErase != 0U) + { + /* Increment page number */ + pFlash.Page++; + FLASH_PageErase(pFlash.Page); + } + else + { + /* No more pages to erase: stop erase pages procedure */ + pFlash.ProcedureOnGoing = FLASH_TYPENONE; + } + } + else + { + /*Stop the ongoing procedure */ + pFlash.ProcedureOnGoing = FLASH_TYPENONE; + } + + /* User callback */ + HAL_FLASH_EndOfOperationCallback(param); + } + + if (pFlash.ProcedureOnGoing == FLASH_TYPENONE) + { + /* Disable End of Operation and Error interrupts */ + __HAL_FLASH_DISABLE_IT(FLASH_IT_EOP | FLASH_IT_OPERR); + + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + } +} + +/** + * @brief FLASH end of operation interrupt callback. + * @param ReturnValue The value saved in this parameter depends on the ongoing procedure + * Page Erase: Page which has been erased + * Program: Address which was selected for data program + * @retval None + */ +__weak void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(ReturnValue); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_FLASH_EndOfOperationCallback could be implemented in the user file + */ +} + +/** + * @brief FLASH operation error interrupt callback. + * @param ReturnValue The value saved in this parameter depends on the ongoing procedure + * Page Erase: Page number which returned an error + * Program: Address which was selected for data program + * @retval None + */ +__weak void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(ReturnValue); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_FLASH_OperationErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup FLASH_Exported_Functions_Group2 Peripheral Control functions + * @brief Management functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the FLASH + memory operations. + +@endverbatim + * @{ + */ + +/** + * @brief Unlock the FLASH control register access. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_Unlock(void) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (READ_BIT(FLASH->CR, FLASH_CR_LOCK) != 0U) + { + /* Authorize the FLASH Registers access */ + WRITE_REG(FLASH->KEYR, FLASH_KEY1); + WRITE_REG(FLASH->KEYR, FLASH_KEY2); + + /* verify Flash is unlock */ + if (READ_BIT(FLASH->CR, FLASH_CR_LOCK) != 0U) + { + status = HAL_ERROR; + } + } + + return status; +} + +/** + * @brief Lock the FLASH control register access. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_Lock(void) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Set the LOCK Bit to lock the FLASH Registers access */ + /* @Note The lock and unlock procedure is done only using CR registers even from CPU2 */ + SET_BIT(FLASH->CR, FLASH_CR_LOCK); + + /* verify Flash is locked */ + if (READ_BIT(FLASH->CR, FLASH_CR_LOCK) == 0U) + { + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Unlock the FLASH Option Bytes Registers access. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + /* @Note The lock and unlock procedure is done only using CR registers even from CPU2 */ + if (READ_BIT(FLASH->CR, FLASH_CR_OPTLOCK) != 0U) + { + /* Authorizes the Option Byte register programming */ + WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY1); + WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY2); + + /* verify option bytes are unlocked */ + if (READ_BIT(FLASH->CR, FLASH_CR_OPTLOCK) == 0U) + { + status = HAL_OK; + } + } + + return status; +} + +/** + * @brief Lock the FLASH Option Bytes Registers access. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_OB_Lock(void) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Set the OPTLOCK Bit to lock the FLASH Option Byte Registers access */ + /* @Note The lock and unlock procedure is done only using CR registers even from CPU2 */ + SET_BIT(FLASH->CR, FLASH_CR_OPTLOCK); + + /* verify option bytes are lock */ + if (READ_BIT(FLASH->CR, FLASH_CR_OPTLOCK) == 0U) + { + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Launch the option byte loading. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_OB_Launch(void) +{ + /* Set the bit to force the option byte reloading */ + /* The OB launch is done from the same register either from CPU1 or CPU2 */ + SET_BIT(FLASH->CR, FLASH_CR_OBL_LAUNCH); + + /* We should not reach here : Option byte launch generates Option byte reset + so return error */ + return HAL_ERROR; +} + +/** + * @} + */ + +/** @defgroup FLASH_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief Peripheral Errors functions + * +@verbatim + =============================================================================== + ##### Peripheral Errors functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time Errors of the FLASH peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Get the specific FLASH error flag. + * @retval FLASH_ErrorCode The returned value can be + * @arg @ref HAL_FLASH_ERROR_NONE No error set + * @arg @ref HAL_FLASH_ERROR_OP FLASH Operation error + * @arg @ref HAL_FLASH_ERROR_PROG FLASH Programming error + * @arg @ref HAL_FLASH_ERROR_WRP FLASH Write protection error + * @arg @ref HAL_FLASH_ERROR_PGA FLASH Programming alignment error + * @arg @ref HAL_FLASH_ERROR_SIZ FLASH Size error + * @arg @ref HAL_FLASH_ERROR_PGS FLASH Programming sequence error + * @arg @ref HAL_FLASH_ERROR_MIS FLASH Fast programming data miss error + * @arg @ref HAL_FLASH_ERROR_FAST FLASH Fast programming error + * @arg @ref HAL_FLASH_ERROR_RD FLASH Read Protection error (PCROP) + * @arg @ref HAL_FLASH_ERROR_OPTV FLASH Option validity error + */ +uint32_t HAL_FLASH_GetError(void) +{ + return pFlash.ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ + +/** @addtogroup FLASH_Private_Functions + * @{ + */ + +/** + * @brief Wait for a FLASH operation to complete. + * @param Timeout Maximum flash operation timeout + * @retval HAL_StatusTypeDef HAL Status + */ +HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout) +{ + uint32_t error; + uint32_t tickstart = HAL_GetTick(); + + /* Wait for the FLASH operation to complete by polling on BUSY flag to be reset. + Even if the FLASH operation fails, the BUSY flag will be reset and an error + flag will be set */ + while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY)) + { + if ((HAL_GetTick() - tickstart) >= Timeout) + { + return HAL_TIMEOUT; + } + } + + /* Check FLASH operation error flags */ + error = FLASH->SR; + + /* Check FLASH End of Operation flag */ + if ((error & FLASH_FLAG_EOP) != 0U) + { + /* Clear FLASH End of Operation pending bit */ + __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP); + } + + /* Workaround for BZ 70309 : + - OPTVERR is always set at power-up due to failure of engi bytes checking + - FLASH_WaitForLastOperation() is called at the beginning of erase or program + operations, so the bit will be clear when performing first operation */ + if ((error & FLASH_FLAG_OPTVERR) != 0U) + { + /* Clear FLASH OPTVERR bit */ + __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_OPTVERR); + + /* Clear OPTVERR bit in "error" variable to not treat it as error */ + error &= ~FLASH_FLAG_OPTVERR; + } + + /* Now update error variable to only error value */ + error &= FLASH_FLAG_SR_ERRORS; + + /* clear error flags */ + __HAL_FLASH_CLEAR_FLAG(error); + + if (error != 0U) + { + /*Save the error code*/ + pFlash.ErrorCode = error; + + return HAL_ERROR; + } + + /* Wait for control register to be written */ + while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_CFGBSY)) + { + if ((HAL_GetTick() - tickstart) >= Timeout) + { + return HAL_TIMEOUT; + } + } + + return HAL_OK; +} + +/** + * @brief Program double-word (64-bit) at a specified address. + * @param Address Specifies the address to be programmed. + * @param Data Specifies the data to be programmed. + * @retval None + */ +static void FLASH_Program_DoubleWord(uint32_t Address, uint64_t Data) +{ + /* Set PG bit */ + SET_BIT(FLASH->CR, FLASH_CR_PG); + + /* Program first word */ + *(uint32_t *)Address = (uint32_t)Data; + + /* Barrier to ensure programming is performed in 2 steps, in right order + (independently of compiler optimization behavior) */ + __ISB(); + + /* Program second word */ + *(uint32_t *)(Address + 4U) = (uint32_t)(Data >> 32U); +} + +/** + * @brief Fast program a 32 row double-word (64-bit) at a specified address. + * @param Address Specifies the address to be programmed. + * @param DataAddress Specifies the address where the data are stored. + * @retval None + */ +static __RAM_FUNC void FLASH_Program_Fast(uint32_t Address, uint32_t DataAddress) +{ + uint8_t row_index = (2 * FLASH_NB_DOUBLE_WORDS_IN_ROW); + __IO uint32_t *dest_addr = (__IO uint32_t *)Address; + __IO uint32_t *src_addr = (__IO uint32_t *)DataAddress; + uint32_t primask_bit; + + /* Set FSTPG bit */ + SET_BIT(FLASH->CR, FLASH_CR_FSTPG); + + /* Enter critical section: row programming should not be longer than 7 ms */ + primask_bit = __get_PRIMASK(); + __disable_irq(); + + /* Program the double word of the row */ + do + { + *dest_addr = *src_addr; + dest_addr++; + src_addr++; + row_index--; + } while (row_index != 0U); + + /* wait for BSY in order to be sure that flash operation is ended before + allowing prefetch in flash. Timeout does not return status, as it will + be anyway done later */ + while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY) != 0U) + { + } + + /* Exit critical section: restore previous priority mask */ + __set_PRIMASK(primask_bit); +} + +/** + * @} + */ + +#endif /* HAL_FLASH_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_flash_ex.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_flash_ex.c new file mode 100644 index 0000000..e54df67 --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_flash_ex.c @@ -0,0 +1,1061 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_flash_ex.c + * @author MCD Application Team + * @brief Extended FLASH HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the FLASH extended peripheral: + * + Extended programming operations functions + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### Flash Extended features ##### + ============================================================================== + + [..] Comparing to other previous devices, the FLASH interface for STM32WBxx + devices contains the following additional features + + (+) Capacity up to 1 Mbyte with single bank architecture supporting read-while-write + capability (RWW) + (+) Single bank memory organization + (+) PCROP protection + (+) WRP protection + (+) CPU2 Security area + (+) Program Erase Suspend feature + + ##### How to use this driver ##### + ============================================================================== + [..] This driver provides functions to configure and program the FLASH memory + of all STM32WBxx devices. It includes + (#) Flash Memory Erase functions: + (++) Lock and Unlock the FLASH interface using HAL_FLASH_Unlock() and + HAL_FLASH_Lock() functions + (++) Erase function: Erase page, erase all sectors + (++) There are two modes of erase : + (+++) Polling Mode using HAL_FLASHEx_Erase() + (+++) Interrupt Mode using HAL_FLASHEx_Erase_IT() + + (#) Option Bytes Programming function: Use HAL_FLASHEx_OBProgram() to : + (++) Set/Reset the write protection (per 4 KByte) + (++) Set the Read protection Level + (++) Program the user Option Bytes + (++) Configure the PCROP protection (per 2 KByte) + (++) Configure the IPCC Buffer start Address + (++) Configure the CPU2 boot region and reset vector start Address + (++) Configure the Flash and SRAM2 secure area + + (#) Get Option Bytes Configuration function: Use HAL_FLASHEx_OBGetConfig() to : + (++) Get the value of a write protection area + (++) Know if the read protection is activated + (++) Get the value of the user Option Bytes + (++) Get the value of a PCROP area + (++) Get the IPCC Buffer start Address + (++) Get the CPU2 boot region and reset vector start Address + (++) Get the Flash and SRAM2 secure area + + (#) Flash Suspend, Allow functions: + (++) Suspend or Allow new program or erase operation request using HAL_FLASHEx_SuspendOperation() and + HAL_FLASHEx_AllowOperation() functions + + (#) Check is flash content is empty or not using HAL_FLASHEx_FlashEmptyCheck(). + and modify this setting (for flash loader purpose e.g.) using + HAL_FLASHEx_ForceFlashEmpty(). + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @defgroup FLASHEx FLASHEx + * @brief FLASH Extended HAL module driver + * @{ + */ + +#ifdef HAL_FLASH_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup FLASHEx_Private_Functions FLASHEx Private Functions + * @{ + */ +static void FLASH_AcknowledgePageErase(void); +static void FLASH_FlushCaches(void); +static void FLASH_OB_WRPConfig(uint32_t WRPArea, uint32_t WRPStartOffset, uint32_t WRDPEndOffset); +static void FLASH_OB_OptrConfig(uint32_t UserType, uint32_t UserConfig, uint32_t RDPLevel); +static void FLASH_OB_PCROP1AConfig(uint32_t PCROPConfig, uint32_t PCROP1AStartAddr, + uint32_t PCROP1AEndAddr); +static void FLASH_OB_PCROP1BConfig(uint32_t PCROP1BStartAddr, uint32_t PCROP1BEndAddr); +static void FLASH_OB_IPCCBufferAddrConfig(uint32_t IPCCDataBufAddr); +static void FLASH_OB_SecureConfig(FLASH_OBProgramInitTypeDef *pOBParam); +static void FLASH_OB_GetWRP(uint32_t WRPArea, uint32_t *WRPStartOffset, uint32_t *WRDPEndOffset); +static uint32_t FLASH_OB_GetRDP(void); +static uint32_t FLASH_OB_GetUser(void); +static void FLASH_OB_GetPCROP(uint32_t *PCROPConfig, uint32_t *PCROP1AStartAddr, uint32_t *PCROP1AEndAddr, + uint32_t *PCROP1BStartAddr, uint32_t *PCROP1BEndAddr); +static uint32_t FLASH_OB_GetIPCCBufferAddr(void); +static void FLASH_OB_GetSecureMemoryConfig(uint32_t *SecureFlashStartAddr, uint32_t *SecureRAM2aStartAddr, + uint32_t *SecureRAM2bStartAddr, uint32_t *SecureMode); +static void FLASH_OB_GetC2BootResetConfig(uint32_t *C2BootResetVectAddr, uint32_t *C2BootResetRegion); +static HAL_StatusTypeDef FLASH_OB_ProceedWriteOperation(void); +/** + * @} + */ + +/* Exported functions -------------------------------------------------------*/ +/** @defgroup FLASHEx_Exported_Functions FLASH Extended Exported Functions + * @{ + */ + +/** @defgroup FLASHEx_Exported_Functions_Group1 Extended IO operation functions + * @brief Extended IO operation functions + * +@verbatim + =============================================================================== + ##### Extended programming operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the Extended FLASH + programming operations Operations. + +@endverbatim + * @{ + */ +/** + * @brief Perform an erase of the specified FLASH memory pages. + * @note Before any operation, it is possible to check there is no operation suspended + * by call HAL_FLASHEx_IsOperationSuspended() + * @param[in] pEraseInit Pointer to an @ref FLASH_EraseInitTypeDef structure that + * contains the configuration information for the erasing. + * @param[out] PageError Pointer to variable that contains the configuration + * information on faulty page in case of error (0xFFFFFFFF means that all + * the pages have been correctly erased) + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *PageError) +{ + HAL_StatusTypeDef status; + uint32_t index; + + /* Check the parameters */ + assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase)); + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Reset error code */ + pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; + + /* Verify that next operation can be proceed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + + if (status == HAL_OK) + { + if (pEraseInit->TypeErase == FLASH_TYPEERASE_PAGES) + { + /*Initialization of PageError variable*/ + *PageError = 0xFFFFFFFFU; + + for (index = pEraseInit->Page; index < (pEraseInit->Page + pEraseInit->NbPages); index++) + { + /* Start erase page */ + FLASH_PageErase(index); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + + if (status != HAL_OK) + { + /* In case of error, stop erase procedure and return the faulty address */ + *PageError = index; + break; + } + } + + /* If operation is completed or interrupted, disable the Page Erase Bit */ + FLASH_AcknowledgePageErase(); + } + + /* Flush the caches to be sure of the data consistency */ + FLASH_FlushCaches(); + } + + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + + return status; +} + +/** + * @brief Perform an erase of the specified FLASH memory pages with interrupt enabled. + * @note Before any operation, it is possible to check there is no operation suspended + * by call HAL_FLASHEx_IsOperationSuspended() + * @param pEraseInit Pointer to an @ref FLASH_EraseInitTypeDef structure that + * contains the configuration information for the erasing. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit) +{ + HAL_StatusTypeDef status; + + /* Check the parameters */ + assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase)); + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Reset error code */ + pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; + + /* save procedure for interrupt treatment */ + pFlash.ProcedureOnGoing = pEraseInit->TypeErase; + + /* Verify that next operation can be proceed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + + if (status != HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + } + else + { + /* Enable End of Operation and Error interrupts */ + __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP | FLASH_IT_OPERR); + + if (pEraseInit->TypeErase == FLASH_TYPEERASE_PAGES) + { + /* Erase by page to be done */ + pFlash.NbPagesToErase = pEraseInit->NbPages; + pFlash.Page = pEraseInit->Page; + + /*Erase 1st page and wait for IT */ + FLASH_PageErase(pEraseInit->Page); + } + } + + /* return status */ + return status; +} + +/** + * @brief Program Option bytes. + * @param pOBInit Pointer to an @ref FLASH_OBProgramInitTypeDef structure that + * contains the configuration information for the programming. + * @note To configure any option bytes, the option lock bit OPTLOCK must be + * cleared with the call of @ref HAL_FLASH_OB_Unlock() function. + * @note New option bytes configuration will be taken into account only + * - after an option bytes launch through the call of @ref HAL_FLASH_OB_Launch() + * - a Power On Reset + * - an exit from Standby or Shutdown mode. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit) +{ + uint32_t optr; + HAL_StatusTypeDef status; + + /* Check the parameters */ + assert_param(IS_OPTIONBYTE(pOBInit->OptionType)); + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; + + /* Write protection configuration */ + if ((pOBInit->OptionType & OPTIONBYTE_WRP) != 0U) + { + /* Configure of Write protection on the selected area */ + FLASH_OB_WRPConfig(pOBInit->WRPArea, pOBInit->WRPStartOffset, pOBInit->WRPEndOffset); + } + + /* Option register */ + if ((pOBInit->OptionType & (OPTIONBYTE_RDP | OPTIONBYTE_USER)) == (OPTIONBYTE_RDP | OPTIONBYTE_USER)) + { + /* Fully modify OPTR register with RDP & user data */ + FLASH_OB_OptrConfig(pOBInit->UserType, pOBInit->UserConfig, pOBInit->RDPLevel); + } + else if ((pOBInit->OptionType & OPTIONBYTE_RDP) != 0U) + { + /* Only modify RDP so get current user data */ + optr = FLASH_OB_GetUser(); + + /* Remove BOR LEVEL User Type*/ + optr &= ~OB_USER_BOR_LEV; + + FLASH_OB_OptrConfig(optr, optr, pOBInit->RDPLevel); + } + else if ((pOBInit->OptionType & OPTIONBYTE_USER) != 0U) + { + /* Only modify user so get current RDP level */ + optr = FLASH_OB_GetRDP(); + FLASH_OB_OptrConfig(pOBInit->UserType, pOBInit->UserConfig, optr); + } + else + { + /* Do Nothing */ + } + + /* PCROP Configuration */ + if ((pOBInit->OptionType & OPTIONBYTE_PCROP) != 0U) + { + /* Check the parameters */ + assert_param(IS_OB_PCROP_CONFIG(pOBInit->PCROPConfig)); + + if ((pOBInit->PCROPConfig & (OB_PCROP_ZONE_A | OB_PCROP_RDP_ERASE)) != 0U) + { + /* Configure the Zone 1A Proprietary code readout protection */ + FLASH_OB_PCROP1AConfig(pOBInit->PCROPConfig, pOBInit->PCROP1AStartAddr, pOBInit->PCROP1AEndAddr); + } + + if ((pOBInit->PCROPConfig & OB_PCROP_ZONE_B) != 0U) + { + /* Configure the Zone 1B Proprietary code readout protection */ + FLASH_OB_PCROP1BConfig(pOBInit->PCROP1BStartAddr, pOBInit->PCROP1BEndAddr); + } + } + + /* Secure mode and CPU2 Boot Vector */ + if ((pOBInit->OptionType & (OPTIONBYTE_SECURE_MODE | OPTIONBYTE_C2_BOOT_VECT)) != 0U) + { + /* Set the secure flash and SRAM memory start address */ + FLASH_OB_SecureConfig(pOBInit); + } + + /* IPCC mailbox data buffer address */ + if ((pOBInit->OptionType & OPTIONBYTE_IPCC_BUF_ADDR) != 0U) + { + /* Configure the IPCC data buffer address */ + FLASH_OB_IPCCBufferAddrConfig(pOBInit->IPCCdataBufAddr); + } + + /* Proceed the OB Write Operation */ + status = FLASH_OB_ProceedWriteOperation(); + + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + + /* return status */ + return status; +} + +/** + * @brief Get the Option bytes configuration. + * @note warning: this API only read flash register, it does not reflect any + * change that would have been programmed between previous Option byte + * loading and current call. + * @param pOBInit Pointer to an @ref FLASH_OBProgramInitTypeDef structure that contains the + * configuration information. The fields pOBInit->WRPArea and + * pOBInit->PCROPConfig should indicate which area is requested + * for the WRP and PCROP. + * @retval None + */ +void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit) +{ + pOBInit->OptionType = OPTIONBYTE_ALL; + + if ((pOBInit->WRPArea == OB_WRPAREA_BANK1_AREAA) || (pOBInit->WRPArea == OB_WRPAREA_BANK1_AREAB)) + { + /* Get write protection on the selected area */ + FLASH_OB_GetWRP(pOBInit->WRPArea, &(pOBInit->WRPStartOffset), &(pOBInit->WRPEndOffset)); + } + + /* Get Read protection level */ + pOBInit->RDPLevel = FLASH_OB_GetRDP(); + + /* Get the user option bytes */ + pOBInit->UserConfig = FLASH_OB_GetUser(); + pOBInit->UserType = OB_USER_ALL; + + /* Get the Zone 1A and 1B Proprietary code readout protection */ + FLASH_OB_GetPCROP(&(pOBInit->PCROPConfig), &(pOBInit->PCROP1AStartAddr), &(pOBInit->PCROP1AEndAddr), + &(pOBInit->PCROP1BStartAddr), &(pOBInit->PCROP1BEndAddr)); + pOBInit->PCROPConfig |= (OB_PCROP_ZONE_A | OB_PCROP_ZONE_B); + + /* Get the IPCC start Address */ + pOBInit->IPCCdataBufAddr = FLASH_OB_GetIPCCBufferAddr(); + + /* Get the Secure Flash start address, Secure Backup RAM2a start address, Secure non-Backup RAM2b start address and the Security Mode, */ + FLASH_OB_GetSecureMemoryConfig(&(pOBInit->SecureFlashStartAddr), &(pOBInit->SecureRAM2aStartAddr), + &(pOBInit->SecureRAM2bStartAddr), &(pOBInit->SecureMode)); + + /* Get the M0+ Secure Boot reset vector and Secure Boot memory selection */ + FLASH_OB_GetC2BootResetConfig(&(pOBInit->C2SecureBootVectAddr), &(pOBInit->C2BootRegion)); +} + +/** + * @brief Flash Empty check + * @note This API checks if first location in Flash is programmed or not. + * This check is done once by Option Byte Loader. + * @retval Returned value can be one of the following values: + * @arg @ref FLASH_PROG_NOT_EMPTY 1st location in Flash is programmed + * @arg @ref FLASH_PROG_EMPTY 1st location in Flash is empty + */ +uint32_t HAL_FLASHEx_FlashEmptyCheck(void) +{ + return (READ_BIT(FLASH->ACR, FLASH_ACR_EMPTY)); +} + + +/** + * @brief Force Empty check value. + * @note Allows to modify program empty check value in order to force this + * information in Flash Interface, for all next reset that do not launch + * Option Byte Loader. + * @param FlashEmpty Specifies the empty check value + * This parameter can be one of the following values: + * @arg @ref FLASH_PROG_NOT_EMPTY 1st location in Flash is programmed + * @arg @ref FLASH_PROG_EMPTY 1st location in Flash is empty + * @retval None + */ +void HAL_FLASHEx_ForceFlashEmpty(uint32_t FlashEmpty) +{ + assert_param(IS_FLASH_EMPTY_CHECK(FlashEmpty)); + + MODIFY_REG(FLASH->ACR, FLASH_ACR_EMPTY, FlashEmpty); +} + +/** + * @brief Suspend new program or erase operation request. + * @note Any new Flash program and erase operation on both CPU side will be suspended + * until this bit and the same bit in Flash CPU2 access control register (FLASH_C2ACR) are + * cleared. The PESD bit in both the Flash status register (FLASH_SR) and Flash + * CPU2 status register (FLASH_C2SR) register will be set when at least one PES + * bit in FLASH_ACR or FLASH_C2ACR is set. + * @retval None + */ +void HAL_FLASHEx_SuspendOperation(void) +{ + SET_BIT(FLASH->ACR, FLASH_ACR_PES); +} + +/** + * @brief Allow new program or erase operation request. + * @note Any new Flash program and erase operation on both CPU side will be allowed + * until one of this bit or the same bit in Flash CPU2 access control register (FLASH_C2ACR) is + * set. The PESD bit in both the Flash status register (FLASH_SR) and Flash + * CPU2 status register (FLASH_C2SR) register will be clear when both PES + * bit in FLASH_ACR or FLASH_C2ACR is cleared. + * @retval None + */ +void HAL_FLASHEx_AllowOperation(void) +{ + CLEAR_BIT(FLASH->ACR, FLASH_ACR_PES); +} + +/** + * @brief Check if new program or erase operation request from CPU1 or CPU2 is suspended + * @note Any new Flash program and erase operation on both CPU side will be allowed + * until one of this bit or the same bit in Flash CPU2 access control register (FLASH_C2ACR) is + * set. The PESD bit in both the Flash status register (FLASH_SR) and Flash + * CPU2 status register (FLASH_C2SR) register will be cleared when both PES + * bit in FLASH_ACR and FLASH_C2ACR are cleared. + * @retval Status + * - 0 : No suspended flash operation + * - 1 : Flash operation is suspended + */ +uint32_t HAL_FLASHEx_IsOperationSuspended(void) +{ + uint32_t status = 0U; + + if (READ_BIT(FLASH->SR, FLASH_SR_PESD) == FLASH_SR_PESD) + { + status = 1U; + } + + return status; +} + +/** + * @} + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup FLASHEx_Private_Functions + * @{ + */ + +/** + * @brief Erase the specified FLASH memory page. + * @param Page FLASH page to erase + * This parameter must be a value between 0 and (max number of pages in Flash - 1) + * @retval None + */ +void FLASH_PageErase(uint32_t Page) +{ + /* Check the parameters */ + assert_param(IS_FLASH_PAGE(Page)); + + /* Proceed to erase the page */ + MODIFY_REG(FLASH->CR, FLASH_CR_PNB, ((Page << FLASH_CR_PNB_Pos) | FLASH_CR_PER | FLASH_CR_STRT)); +} + +/** + * @brief Flush the instruction and data caches. + * @retval None + */ +static void FLASH_FlushCaches(void) +{ + /* Flush instruction cache */ + if (READ_BIT(FLASH->ACR, FLASH_ACR_ICEN) == FLASH_ACR_ICEN) + { + /* Disable instruction cache */ + __HAL_FLASH_INSTRUCTION_CACHE_DISABLE(); + /* Reset instruction cache */ + __HAL_FLASH_INSTRUCTION_CACHE_RESET(); + /* Enable instruction cache */ + __HAL_FLASH_INSTRUCTION_CACHE_ENABLE(); + } + + /* Flush data cache */ + if (READ_BIT(FLASH->ACR, FLASH_ACR_DCEN) == FLASH_ACR_DCEN) + { + /* Disable data cache */ + __HAL_FLASH_DATA_CACHE_DISABLE(); + /* Reset data cache */ + __HAL_FLASH_DATA_CACHE_RESET(); + /* Enable data cache */ + __HAL_FLASH_DATA_CACHE_ENABLE(); + } +} + +/** + * @brief Acknlowldge the page erase operation. + * @retval None + */ +static void FLASH_AcknowledgePageErase(void) +{ + CLEAR_BIT(FLASH->CR, (FLASH_CR_PER | FLASH_CR_PNB)); +} + +/** + * @brief Configure the write protection of the desired pages. + * @note When WRP is active in a zone, it cannot be erased or programmed. + * Consequently, a software mass erase cannot be performed if one zone + * is write-protected. + * @note When the memory read protection level is selected (RDP level = 1), + * it is not possible to program or erase Flash memory if the CPU debug + * features are connected (JTAG or single wire) or boot code is being + * executed from RAM or System flash, even if WRP is not activated. + * @note To configure the WRP options, the option lock bit OPTLOCK must be + * cleared with the call of the @ref HAL_FLASH_OB_Unlock() function. + * @note To validate the WRP options, the option bytes must be reloaded + * through the call of the @ref HAL_FLASH_OB_Launch() function. + * @param WRPArea Specifies the area to be configured. + * This parameter can be one of the following values: + * @arg @ref OB_WRPAREA_BANK1_AREAA Flash Bank 1 Area A + * @arg @ref OB_WRPAREA_BANK1_AREAB Flash Bank 1 Area B + * @param WRPStartOffset Specifies the start page of the write protected area + * This parameter can be page number between 0 and (max number of pages in the Flash - 1) + * @param WRDPEndOffset Specifies the end page of the write protected area + * This parameter can be page number between WRPStartOffset and (max number of pages in the Flash - 1) + * @retval None + */ +static void FLASH_OB_WRPConfig(uint32_t WRPArea, uint32_t WRPStartOffset, uint32_t WRDPEndOffset) +{ + /* Check the parameters */ + assert_param(IS_OB_WRPAREA(WRPArea)); + assert_param(IS_FLASH_PAGE(WRPStartOffset)); + assert_param(IS_FLASH_PAGE(WRDPEndOffset)); + + /* Configure the write protected area */ + if (WRPArea == OB_WRPAREA_BANK1_AREAA) + { + MODIFY_REG(FLASH->WRP1AR, (FLASH_WRP1AR_WRP1A_STRT | FLASH_WRP1AR_WRP1A_END), + (WRPStartOffset | (WRDPEndOffset << FLASH_WRP1AR_WRP1A_END_Pos))); + } + else /* OB_WRPAREA_BANK1_AREAB */ + { + MODIFY_REG(FLASH->WRP1BR, (FLASH_WRP1BR_WRP1B_STRT | FLASH_WRP1BR_WRP1B_END), + (WRPStartOffset | (WRDPEndOffset << FLASH_WRP1AR_WRP1A_END_Pos))); + } +} + +/** + * @brief Set user & RDP configuration + * @note !!! Warning : When enabling OB_RDP level 2 it's no more possible + * to go back to level 1 or 0 !!! + * @param UserType The FLASH User Option Bytes to be modified + * This parameter can be a combination of all the following values: + * @arg @ref OB_USER_BOR_LEV or @ref OB_USER_nRST_STOP or @ref OB_USER_nRST_STDBY or + * @arg @ref OB_USER_nRST_SHDW or @ref OB_USER_IWDG_SW or @ref OB_USER_IWDG_STOP or + * @arg @ref OB_USER_IWDG_STDBY or @ref OB_USER_WWDG_SW or @ref OB_USER_nBOOT1 or + * @arg @ref OB_USER_SRAM2PE or @ref OB_USER_SRAM2RST or @ref OB_USER_nSWBOOT0 or + * @arg @ref OB_USER_nBOOT0 or @ref OB_USER_AGC_TRIM or @ref OB_USER_ALL + * @param UserConfig The FLASH User Option Bytes values. + * This parameter can be a combination of all the following values: + * @arg @ref OB_BOR_LEVEL_0 or @ref OB_BOR_LEVEL_1 or ... or @ref OB_BOR_LEVEL_4 + * @arg @ref OB_STOP_RST or @ref OB_STOP_NORST + * @arg @ref OB_STANDBY_RST or @ref OB_STANDBY_NORST + * @arg @ref OB_SHUTDOWN_RST or @ref OB_SHUTDOWN_NORST + * @arg @ref OB_IRH_ENABLE or @ref OB_IRH_DISABLE (*) + * @arg @ref OB_IWDG_SW or @ref OB_IWDG_HW + * @arg @ref OB_IWDG_STOP_FREEZE or @ref OB_IWDG_STOP_RUN + * @arg @ref OB_IWDG_STDBY_FREEZE or @ref OB_IWDG_STDBY_RUN + * @arg @ref OB_WWDG_SW or @ref OB_WWDG_HW + * @arg @ref OB_BOOT1_SRAM or @ref OB_BOOT1_SYSTEM + * @arg @ref OB_SRAM2_PARITY_ENABLE or @ref OB_SRAM2_PARITY_DISABLE + * @arg @ref OB_SRAM2_RST_ERASE or @ref OB_SRAM2_RST_NOT_ERASE + * @arg @ref OB_BOOT0_FROM_OB or @ref OB_BOOT0_FROM_PIN + * @arg @ref OB_BOOT0_RESET or @ref OB_BOOT0_SET + * @arg @ref OB_RESET_MODE_INPUT_ONLY or @ref OB_RESET_MODE_GPIO or @ref OB_RESET_MODE_INPUT_OUTPUT (*) + * @arg @ref OB_AGC_TRIM_0 or @ref OB_AGC_TRIM_1 or ... or @ref OB_AGC_TRIM_7 + * @param RDPLevel: specifies the read protection level. + * This parameter can be one of the following values: + * @arg @ref OB_RDP_LEVEL_0 No protection + * @arg @ref OB_RDP_LEVEL_1 Read protection of the memory + * @arg @ref OB_RDP_LEVEL_2 Full chip protection + * @retval None + */ +static void FLASH_OB_OptrConfig(uint32_t UserType, uint32_t UserConfig, uint32_t RDPLevel) +{ + uint32_t optr; + + /* Check the parameters */ + assert_param(IS_OB_USER_TYPE(UserType)); + assert_param(IS_OB_USER_CONFIG(UserType, UserConfig)); + assert_param(IS_OB_RDP_LEVEL(RDPLevel)); + + /* Configure the RDP level in the option bytes register */ + optr = FLASH->OPTR; + optr &= ~(UserType | FLASH_OPTR_RDP); + FLASH->OPTR = (optr | UserConfig | RDPLevel); +} + +/** + * @brief Configure the Zone 1A Proprietary code readout protection of the desired addresses, + * and erase configuration on RDP regression. + * @note To configure the PCROP options, the option lock bit OPTLOCK must be + * cleared with the call of the @ref HAL_FLASH_OB_Unlock() function. + * @note To validate the PCROP options, the option bytes must be reloaded + * through the call of the @ref HAL_FLASH_OB_Launch() function. + * @param PCROPConfig: specifies the erase configuration (OB_PCROP_RDP_NOT_ERASE or OB_PCROP_RDP_ERASE) + * on RDP level 1 regression. + * @param PCROP1AStartAddr Specifies the Zone 1A Start address of the Proprietary code readout protection + * This parameter can be an address between begin and end of the flash + * @param PCROP1AEndAddr Specifies the Zone 1A end address of the Proprietary code readout protection + * This parameter can be an address between PCROP1AStartAddr and end of the flash + * @retval None + */ +static void FLASH_OB_PCROP1AConfig(uint32_t PCROPConfig, uint32_t PCROP1AStartAddr, uint32_t PCROP1AEndAddr) +{ + uint32_t startoffset; + uint32_t endoffset; + uint32_t pcrop1aend; + + /* Check the parameters */ + assert_param(IS_OB_PCROP_CONFIG(PCROPConfig)); + assert_param(IS_FLASH_MAIN_MEM_ADDRESS(PCROP1AStartAddr)); + assert_param(IS_FLASH_MAIN_MEM_ADDRESS(PCROP1AEndAddr)); + + /* get pcrop 1A end register */ + pcrop1aend = FLASH->PCROP1AER; + + /* Configure the Proprietary code readout protection offset */ + if ((PCROPConfig & OB_PCROP_ZONE_A) != 0U) + { + /* Compute offset depending on pcrop granularity */ + startoffset = ((PCROP1AStartAddr - FLASH_BASE) >> FLASH_PCROP_GRANULARITY_OFFSET); /* 2K pages */ + endoffset = ((PCROP1AEndAddr - FLASH_BASE) >> FLASH_PCROP_GRANULARITY_OFFSET); /* 2K pages */ + + /* Set Zone A start offset */ + WRITE_REG(FLASH->PCROP1ASR, startoffset); + + /* Set Zone A end offset */ + pcrop1aend &= ~FLASH_PCROP1AER_PCROP1A_END; + pcrop1aend |= endoffset; + } + + /* Set RDP erase protection if needed. This bit is only set & will be reset by mass erase */ + if ((PCROPConfig & OB_PCROP_RDP_ERASE) != 0U) + { + pcrop1aend |= FLASH_PCROP1AER_PCROP_RDP; + } + + /* set 1A End register */ + WRITE_REG(FLASH->PCROP1AER, pcrop1aend); +} + +/** + * @brief Configure the Zone 1B Proprietary code readout protection of the desired addresses. + * @note To configure the PCROP options, the option lock bit OPTLOCK must be + * cleared with the call of the @ref HAL_FLASH_OB_Unlock() function. + * @note To validate the PCROP options, the option bytes must be reloaded + * through the call of the @ref HAL_FLASH_OB_Launch() function. + * @param PCROP1BStartAddr Specifies the Zone 1BStart address of the Proprietary code readout protection + * This parameter can be an address between begin and end of the flash + * @param PCROP1BEndAddr Specifies the Zone 1B end address of the Proprietary code readout protection + * This parameter can be an address between PCROP1BStartAddr and end of the flash + * @retval None + */ +static void FLASH_OB_PCROP1BConfig(uint32_t PCROP1BStartAddr, uint32_t PCROP1BEndAddr) +{ + uint32_t startoffset; + uint32_t endoffset; + + /* Check the parameters */ + assert_param(IS_FLASH_MAIN_MEM_ADDRESS(PCROP1BStartAddr)); + assert_param(IS_FLASH_MAIN_MEM_ADDRESS(PCROP1BEndAddr)); + + /* Compute offset depending on pcrop granularity */ + startoffset = ((PCROP1BStartAddr - FLASH_BASE) >> FLASH_PCROP_GRANULARITY_OFFSET); /* 2K pages */ + endoffset = ((PCROP1BEndAddr - FLASH_BASE) >> FLASH_PCROP_GRANULARITY_OFFSET); /* 2K pages */ + + /* Configure the Proprietary code readout protection start address */ + WRITE_REG(FLASH->PCROP1BSR, startoffset); + + /* Configure the Proprietary code readout protection end address */ + WRITE_REG(FLASH->PCROP1BER, endoffset); +} + +/** + * @brief Program the FLASH IPCC data buffer address. + * @note To configure the extra user option bytes, the option lock bit OPTLOCK must + * be cleared with the call of the @ref HAL_FLASH_OB_Unlock() function. + * @note To validate the extra user option bytes, the option bytes must be reloaded + * through the call of the @ref HAL_FLASH_OB_Launch() function. + * @param IPCCDataBufAddr IPCC data buffer start address area in SRAM2 + * This parameter must be the double-word aligned + * @retval None + */ +static void FLASH_OB_IPCCBufferAddrConfig(uint32_t IPCCDataBufAddr) +{ + assert_param(IS_OB_IPCC_BUF_ADDR(IPCCDataBufAddr)); + + /* Configure the option bytes register */ + WRITE_REG(FLASH->IPCCBR, (uint32_t)((IPCCDataBufAddr - SRAM2A_BASE) >> 4)); +} + +/** + * @brief Configure the secure start address of the different memories (FLASH and SRAM2), + * the secure mode and the CPU2 Secure Boot reset vector + * @note To configure the PCROP options, the option lock bit OPTLOCK must be + * cleared with the call of the @ref HAL_FLASH_OB_Unlock() function. + * @param pOBParam Pointer to an @ref FLASH_OBProgramInitTypeDef structure that + * contains the configuration information for the programming + * @retval void + */ +static void FLASH_OB_SecureConfig(FLASH_OBProgramInitTypeDef *pOBParam) +{ + uint32_t sfr_reg_val = READ_REG(FLASH->SFR); + uint32_t srrvr_reg_val = READ_REG(FLASH->SRRVR); + + if ((pOBParam->OptionType & OPTIONBYTE_SECURE_MODE) != 0U) + { + assert_param(IS_OB_SFSA_START_ADDR(pOBParam->SecureFlashStartAddr)); + assert_param(IS_OB_SBRSA_START_ADDR(pOBParam->SecureRAM2aStartAddr)); + assert_param(IS_OB_SNBRSA_START_ADDR(pOBParam->SecureRAM2bStartAddr)); + assert_param(IS_OB_SECURE_MODE(pOBParam->SecureMode)); + + /* Configure SFR register content with start PAGE index to secure */ + MODIFY_REG(sfr_reg_val, FLASH_SFR_SFSA, (((pOBParam->SecureFlashStartAddr - FLASH_BASE) / FLASH_PAGE_SIZE) << FLASH_SFR_SFSA_Pos)); + + /* Configure SRRVR register */ +#if defined(FLASH_SRRVR_SBRSA_A) + MODIFY_REG(srrvr_reg_val, (FLASH_SRRVR_SBRSA_A | FLASH_SRRVR_SBRSA_B), \ + (((((pOBParam->SecureRAM2aStartAddr - SRAM2A_BASE) >> SRAM_SECURE_PAGE_GRANULARITY_OFFSET) << FLASH_SRRVR_SBRSA_A_Pos)) | \ + ((((pOBParam->SecureRAM2bStartAddr - SRAM2B_BASE) >> SRAM_SECURE_PAGE_GRANULARITY_OFFSET) << FLASH_SRRVR_SBRSA_B_Pos)))); +#else + MODIFY_REG(srrvr_reg_val, (FLASH_SRRVR_SBRSA | FLASH_SRRVR_SNBRSA), \ + (((((pOBParam->SecureRAM2aStartAddr - SRAM2A_BASE) >> SRAM_SECURE_PAGE_GRANULARITY_OFFSET) << FLASH_SRRVR_SBRSA_Pos)) | \ + ((((pOBParam->SecureRAM2bStartAddr - SRAM2B_BASE) >> SRAM_SECURE_PAGE_GRANULARITY_OFFSET) << FLASH_SRRVR_SNBRSA_Pos)))); +#endif /* FLASH_SRRVR_SBRSA_A */ + + /* If Full System Secure mode is requested, clear all the corresponding bit */ + /* Else set the corresponding bit */ + if (pOBParam->SecureMode == SYSTEM_IN_SECURE_MODE) + { + CLEAR_BIT(sfr_reg_val, FLASH_SFR_FSD); +#if defined(FLASH_SRRVR_BRSD_A) + CLEAR_BIT(srrvr_reg_val, (FLASH_SRRVR_BRSD_A | FLASH_SRRVR_BRSD_B)); +#else + CLEAR_BIT(srrvr_reg_val, (FLASH_SRRVR_BRSD | FLASH_SRRVR_NBRSD)); +#endif /* FLASH_SRRVR_BRSD_A */ + } + else + { + SET_BIT(sfr_reg_val, FLASH_SFR_FSD); +#if defined(FLASH_SRRVR_BRSD_A) + SET_BIT(srrvr_reg_val, (FLASH_SRRVR_BRSD_A | FLASH_SRRVR_BRSD_B)); +#else + SET_BIT(srrvr_reg_val, (FLASH_SRRVR_BRSD | FLASH_SRRVR_NBRSD)); +#endif /* FLASH_SRRVR_BRSD_A */ + } + + /* Update Flash registers */ + WRITE_REG(FLASH->SFR, sfr_reg_val); + } + + /* Boot vector */ + if ((pOBParam->OptionType & OPTIONBYTE_C2_BOOT_VECT) != 0U) + { + /* Check the parameters */ + assert_param(IS_OB_BOOT_VECTOR_ADDR(pOBParam->C2SecureBootVectAddr)); + assert_param(IS_OB_BOOT_REGION(pOBParam->C2BootRegion)); + + /* Set the boot vector */ + if (pOBParam->C2BootRegion == OB_C2_BOOT_FROM_FLASH) + { + MODIFY_REG(srrvr_reg_val, (FLASH_SRRVR_SBRV | FLASH_SRRVR_C2OPT), + (((pOBParam->C2SecureBootVectAddr - FLASH_BASE) >> 2) | pOBParam->C2BootRegion)); + } + else + { + MODIFY_REG(srrvr_reg_val, (FLASH_SRRVR_SBRV | FLASH_SRRVR_C2OPT), + (((pOBParam->C2SecureBootVectAddr - SRAM1_BASE) >> 2) | pOBParam->C2BootRegion)); + } + } + + /* Update Flash registers */ + WRITE_REG(FLASH->SRRVR, srrvr_reg_val); +} + +/** + * @brief Return the FLASH Write Protection Option Bytes value. + * @param[in] WRPArea Specifies the area to be returned. + * This parameter can be one of the following values: + * @arg @ref OB_WRPAREA_BANK1_AREAA Flash Bank 1 Area A + * @arg @ref OB_WRPAREA_BANK1_AREAB Flash Bank 1 Area B + * @param[out] WRPStartOffset Specifies the address where to copied the start page + * of the write protected area + * @param[out] WRDPEndOffset Specifies the address where to copied the end page of + * the write protected area + * @retval None + */ +static void FLASH_OB_GetWRP(uint32_t WRPArea, uint32_t *WRPStartOffset, uint32_t *WRDPEndOffset) +{ + /* Check the parameters */ + assert_param(IS_OB_WRPAREA(WRPArea)); + + /* Get the configuration of the write protected area */ + if (WRPArea == OB_WRPAREA_BANK1_AREAA) + { + *WRPStartOffset = READ_BIT(FLASH->WRP1AR, FLASH_WRP1AR_WRP1A_STRT); + *WRDPEndOffset = (READ_BIT(FLASH->WRP1AR, FLASH_WRP1AR_WRP1A_END) >> FLASH_WRP1AR_WRP1A_END_Pos); + } + else /* OB_WRPAREA_BANK1_AREAB */ + { + *WRPStartOffset = READ_BIT(FLASH->WRP1BR, FLASH_WRP1BR_WRP1B_STRT); + *WRDPEndOffset = (READ_BIT(FLASH->WRP1BR, FLASH_WRP1BR_WRP1B_END) >> FLASH_WRP1BR_WRP1B_END_Pos); + } +} + +/** + * @brief Return the FLASH Read Protection level. + * @retval FLASH ReadOut Protection Status: + * This return value can be one of the following values: + * @arg @ref OB_RDP_LEVEL_0 No protection + * @arg @ref OB_RDP_LEVEL_1 Read protection of the memory + * @arg @ref OB_RDP_LEVEL_2 Full chip protection + */ +static uint32_t FLASH_OB_GetRDP(void) +{ + uint32_t rdplvl = READ_BIT(FLASH->OPTR, FLASH_OPTR_RDP); + + if ((rdplvl != OB_RDP_LEVEL_0) && (rdplvl != OB_RDP_LEVEL_2)) + { + return (OB_RDP_LEVEL_1); + } + else + { + return rdplvl; + } +} + +/** + * @brief Return the FLASH User Option Byte value. + * @retval This return value can be a combination of all the following values: + * @arg @ref OB_BOR_LEVEL_0 or @ref OB_BOR_LEVEL_1 or ... or @ref OB_BOR_LEVEL_4 + * @arg @ref OB_STOP_RST or @ref OB_STOP_RST + * @arg @ref OB_STANDBY_RST or @ref OB_STANDBY_NORST + * @arg @ref OB_SHUTDOWN_RST or @ref OB_SHUTDOWN_NORST + * @arg @ref OB_IRH_ENABLE or @ref OB_IRH_DISABLE (*) + * @arg @ref OB_IWDG_SW or @ref OB_IWDG_HW + * @arg @ref OB_IWDG_STOP_FREEZE or @ref OB_IWDG_STOP_RUN + * @arg @ref OB_IWDG_STDBY_FREEZE or @ref OB_IWDG_STDBY_RUN + * @arg @ref OB_WWDG_SW or @ref OB_WWDG_HW + * @arg @ref OB_BOOT1_SRAM or @ref OB_BOOT1_SYSTEM + * @arg @ref OB_SRAM2_PARITY_ENABLE or @ref OB_SRAM2_PARITY_DISABLE + * @arg @ref OB_SRAM2_RST_ERASE or @ref OB_SRAM2_RST_NOT_ERASE + * @arg @ref OB_BOOT0_FROM_OB or @ref OB_BOOT0_FROM_PIN + * @arg @ref OB_BOOT0_RESET or @ref OB_BOOT0_SET + * @arg @ref OB_RESET_MODE_INPUT_ONLY or @ref OB_RESET_MODE_GPIO or @ref OB_RESET_MODE_INPUT_OUTPUT (*) + * @arg @ref OB_AGC_TRIM_0 or @ref OB_AGC_TRIM_1 or ... or @ref OB_AGC_TRIM_7 + */ +static uint32_t FLASH_OB_GetUser(void) +{ + uint32_t user_config = (READ_REG(FLASH->OPTR) & OB_USER_ALL); + CLEAR_BIT(user_config, (FLASH_OPTR_RDP | FLASH_OPTR_ESE)); + + return user_config; +} + +/** + * @brief Return the FLASH Write Protection Option Bytes value. + * @param PCROPConfig [out] Specifies the address where to copied the configuration of PCROP_RDP option + * @param PCROP1AStartAddr [out] Specifies the address where to copied the start address + * of the Zone 1A Proprietary code readout protection + * @param PCROP1AEndAddr [out] Specifies the address where to copied the end address of + * the Zone 1A Proprietary code readout protection + * @param PCROP1BStartAddr [out] Specifies the address where to copied the start address + * of the Zone 1B Proprietary code readout protection + * @param PCROP1BEndAddr [out] Specifies the address where to copied the end address of + * the Zone 1B Proprietary code readout protection + * @retval None + */ +static void FLASH_OB_GetPCROP(uint32_t *PCROPConfig, uint32_t *PCROP1AStartAddr, uint32_t *PCROP1AEndAddr, + uint32_t *PCROP1BStartAddr, uint32_t *PCROP1BEndAddr) +{ + uint32_t pcrop; + + pcrop = (READ_BIT(FLASH->PCROP1BSR, FLASH_PCROP1BSR_PCROP1B_STRT)); + *PCROP1BStartAddr = ((pcrop << FLASH_PCROP_GRANULARITY_OFFSET) + FLASH_BASE); + + pcrop = (READ_BIT(FLASH->PCROP1BER, FLASH_PCROP1BER_PCROP1B_END)); + *PCROP1BEndAddr = ((pcrop << FLASH_PCROP_GRANULARITY_OFFSET) + FLASH_BASE); + + pcrop = (READ_BIT(FLASH->PCROP1ASR, FLASH_PCROP1ASR_PCROP1A_STRT)); + *PCROP1AStartAddr = ((pcrop << FLASH_PCROP_GRANULARITY_OFFSET) + FLASH_BASE); + + pcrop = (READ_BIT(FLASH->PCROP1AER, FLASH_PCROP1AER_PCROP1A_END)); + *PCROP1AEndAddr = ((pcrop << FLASH_PCROP_GRANULARITY_OFFSET) + FLASH_BASE); + + *PCROPConfig = (READ_REG(FLASH->PCROP1AER) & FLASH_PCROP1AER_PCROP_RDP); +} + +/** + * @brief Return the FLASH IPCC data buffer base address Option Byte value. + * @retval Returned value is the IPCC data buffer start address area in SRAM2. + */ +static uint32_t FLASH_OB_GetIPCCBufferAddr(void) +{ + return (uint32_t)((READ_BIT(FLASH->IPCCBR, FLASH_IPCCBR_IPCCDBA) << 4) + SRAM2A_BASE); +} + +/** + * @brief Return the Secure Flash start address, Secure Backup RAM2a start address, Secure non-Backup RAM2b start address and the SecureMode + * @param SecureFlashStartAddr Specifies the address where to copied the Secure Flash start address + * @param SecureRAM2aStartAddr Specifies the address where to copied the Secure Backup RAM2a start address + * @param SecureRAM2bStartAddr Specifies the address where to copied the Secure non-Backup RAM2b start address + * @param SecureMode Specifies the address where to copied the Secure Mode. + * This return value can be one of the following values: + * @arg @ref SYSTEM_IN_SECURE_MODE : Security enabled + * @arg @ref SYSTEM_NOT_IN_SECURE_MODE : Security disabled + * @retval None + */ +static void FLASH_OB_GetSecureMemoryConfig(uint32_t *SecureFlashStartAddr, uint32_t *SecureRAM2aStartAddr, + uint32_t *SecureRAM2bStartAddr, uint32_t *SecureMode) +{ + uint32_t sfr_reg_val = READ_REG(FLASH->SFR); + uint32_t srrvr_reg_val = READ_REG(FLASH->SRRVR); + + /* Get Secure Flash start address */ + uint32_t user_config = (READ_BIT(sfr_reg_val, FLASH_SFR_SFSA) >> FLASH_SFR_SFSA_Pos); + + *SecureFlashStartAddr = ((user_config * FLASH_PAGE_SIZE) + FLASH_BASE); + + /* Get Secure SRAM2a start address */ +#if defined(FLASH_SRRVR_SBRSA_A) + user_config = (READ_BIT(srrvr_reg_val, FLASH_SRRVR_SBRSA_A) >> FLASH_SRRVR_SBRSA_A_Pos); +#else + user_config = (READ_BIT(srrvr_reg_val, FLASH_SRRVR_SBRSA) >> FLASH_SRRVR_SBRSA_Pos); +#endif /* FLASH_SRRVR_SBRSA_A */ + + *SecureRAM2aStartAddr = ((user_config << SRAM_SECURE_PAGE_GRANULARITY_OFFSET) + SRAM2A_BASE); + + /* Get Secure SRAM2b start address */ +#if defined(FLASH_SRRVR_SBRSA_B) + user_config = (READ_BIT(srrvr_reg_val, FLASH_SRRVR_SBRSA_B) >> FLASH_SRRVR_SBRSA_B_Pos); +#else + user_config = (READ_BIT(srrvr_reg_val, FLASH_SRRVR_SNBRSA) >> FLASH_SRRVR_SNBRSA_Pos); +#endif /* FLASH_SRRVR_SBRSA_B */ + + *SecureRAM2bStartAddr = ((user_config << SRAM_SECURE_PAGE_GRANULARITY_OFFSET) + SRAM2B_BASE); + + /* Get Secure Area mode */ + *SecureMode = (READ_BIT(FLASH->OPTR, FLASH_OPTR_ESE)); +} + +/** + * @brief Return the CPU2 Secure Boot reset vector address and the CPU2 Secure Boot Region + * @param C2BootResetVectAddr Specifies the address where to copied the CPU2 Secure Boot reset vector address + * @param C2BootResetRegion Specifies the Secure Boot reset memory region + * @retval None + */ +static void FLASH_OB_GetC2BootResetConfig(uint32_t *C2BootResetVectAddr, uint32_t *C2BootResetRegion) +{ + *C2BootResetRegion = (READ_BIT(FLASH->SRRVR, FLASH_SRRVR_C2OPT)); + + if (*C2BootResetRegion == OB_C2_BOOT_FROM_FLASH) + { + *C2BootResetVectAddr = (uint32_t)((READ_BIT(FLASH->SRRVR, FLASH_SRRVR_SBRV) << 2) + FLASH_BASE); + } + else + { + *C2BootResetVectAddr = (uint32_t)((READ_BIT(FLASH->SRRVR, FLASH_SRRVR_SBRV) << 2) + SRAM1_BASE); + } +} + +/** + * @brief Proceed the OB Write Operation. + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_ProceedWriteOperation(void) +{ + HAL_StatusTypeDef status; + + /* Verify that next operation can be proceed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + + if (status == HAL_OK) + { + /* Set OPTSTRT Bit */ + SET_BIT(FLASH->CR, FLASH_CR_OPTSTRT); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + } + + return status; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_FLASH_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_gpio.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_gpio.c new file mode 100644 index 0000000..564acc3 --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_gpio.c @@ -0,0 +1,551 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_gpio.c + * @author MCD Application Team + * @brief GPIO HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the General Purpose Input/Output (GPIO) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### GPIO Peripheral features ##### + ============================================================================== + [..] + (+) Each port bit of the general-purpose I/O (GPIO) ports can be individually + configured by software in several modes: + (++) Input mode + (++) Analog mode + (++) Output mode + (++) Alternate function mode + (++) External interrupt/event lines + + (+) During and just after reset, the alternate functions and external interrupt + lines are not active and the I/O ports are configured in input floating mode. + + (+) All GPIO pins have weak internal pull-up and pull-down resistors, which can be + activated or not. + + (+) In Output or Alternate mode, each IO can be configured on open-drain or push-pull + type and the IO speed can be selected depending on the VDD value. + + (+) The microcontroller IO pins are connected to onboard peripherals/modules through a + multiplexer that allows only one peripheral alternate function (AF) connected + to an IO pin at a time. In this way, there can be no conflict between peripherals + sharing the same IO pin. + + (+) All ports have external interrupt/event capability. To use external interrupt + lines, the port must be configured in input mode. All available GPIO pins are + connected to the 16 external interrupt/event lines from EXTI0 to EXTI15. + + (+) The external interrupt/event controller consists of up to 28 edge detectors + (16 lines are connected to GPIO) for generating event/interrupt requests (each + input line can be independently configured to select the type (interrupt or event) + and the corresponding trigger event (rising or falling or both). Each line can + also be masked independently. + + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Enable the GPIO AHB clock using the following function: __HAL_RCC_GPIOx_CLK_ENABLE(). + + (#) Configure the GPIO pin(s) using HAL_GPIO_Init(). + (++) Configure the IO mode using "Mode" member from GPIO_InitTypeDef structure + (++) Activate Pull-up, Pull-down resistor using "Pull" member from GPIO_InitTypeDef + structure. + (++) In case of Output or alternate function mode selection: the speed is + configured through "Speed" member from GPIO_InitTypeDef structure. + (++) In alternate mode is selection, the alternate function connected to the IO + is configured through "Alternate" member from GPIO_InitTypeDef structure. + (++) Analog mode is required when a pin is to be used as ADC channel + or DAC output. + (++) In case of external interrupt/event selection the "Mode" member from + GPIO_InitTypeDef structure select the type (interrupt or event) and + the corresponding trigger event (rising or falling or both). + + (#) In case of external interrupt/event mode selection, configure NVIC IRQ priority + mapped to the EXTI line using HAL_NVIC_SetPriority() and enable it using + HAL_NVIC_EnableIRQ(). + + (#) To get the level of a pin configured in input mode use HAL_GPIO_ReadPin(). + + (#) To set/reset the level of a pin configured in output mode use + HAL_GPIO_WritePin()/HAL_GPIO_TogglePin(). + + (#) To set the level of several pins and reset level of several other pins in + same cycle, use HAL_GPIO_WriteMultipleStatePin(). + + (#) To lock pin configuration until next reset use HAL_GPIO_LockPin(). + + (#) During and just after reset, the alternate functions are not + active and the GPIO pins are configured in input floating mode (except JTAG + pins). + + (#) The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general purpose + (PC14 and PC15, respectively) when the LSE oscillator is off. The LSE has + priority over the GPIO function. + + (#) The HSE oscillator pins OSC_IN/OSC_OUT can be used as + general purpose PH0 and PH1, respectively, when the HSE oscillator is off. + The HSE has priority over the GPIO function. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @addtogroup GPIO + * @{ + */ +/** MISRA C:2012 deviation rule has been granted for following rules: + * Rule-12.2 - Medium: RHS argument is in interval [0,INF] which is out of + * range of the shift operator in following API : + * HAL_GPIO_Init + * HAL_GPIO_DeInit + */ + +#ifdef HAL_GPIO_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private defines ------------------------------------------------------------*/ +/** @addtogroup GPIO_Private_Constants GPIO Private Constants + * @{ + */ +#define GPIO_NUMBER (16u) +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup GPIO_Exported_Functions + * @{ + */ + +/** @addtogroup GPIO_Exported_Functions_Group1 + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the GPIOx peripheral according to the specified parameters in the GPIO_Init. + * @param GPIOx where x can be (A..H) to select the GPIO peripheral for STM32WBxx family + * @param GPIO_Init pointer to a GPIO_InitTypeDef structure that contains + * the configuration information for the specified GPIO peripheral. + * @retval None + */ +void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init) +{ + uint32_t position = 0x00u; + uint32_t iocurrent; + uint32_t temp; + + /* Check the parameters */ + assert_param(IS_GPIO_ALL_INSTANCE(GPIOx)); + assert_param(IS_GPIO_PIN(GPIO_Init->Pin)); + assert_param(IS_GPIO_MODE(GPIO_Init->Mode)); + assert_param(IS_GPIO_PULL(GPIO_Init->Pull)); + + /* Configure the port pins */ + while (((GPIO_Init->Pin) >> position) != 0x00u) + { + /* Get current io position */ + iocurrent = (GPIO_Init->Pin) & (1uL << position); + + if (iocurrent != 0x00u) + { + /*--------------------- GPIO Mode Configuration ------------------------*/ + /* In case of Output or Alternate function mode selection */ + if (((GPIO_Init->Mode & GPIO_MODE) == MODE_OUTPUT) || ((GPIO_Init->Mode & GPIO_MODE) == MODE_AF)) + { + /* Check the Speed parameter */ + assert_param(IS_GPIO_SPEED(GPIO_Init->Speed)); + /* Configure the IO Speed */ + temp = GPIOx->OSPEEDR; + temp &= ~(GPIO_OSPEEDR_OSPEED0 << (position * 2u)); + temp |= (GPIO_Init->Speed << (position * 2u)); + GPIOx->OSPEEDR = temp; + + /* Configure the IO Output Type */ + temp = GPIOx->OTYPER; + temp &= ~(GPIO_OTYPER_OT0 << position) ; + temp |= (((GPIO_Init->Mode & OUTPUT_TYPE) >> OUTPUT_TYPE_Pos) << position); + GPIOx->OTYPER = temp; + } + + /* Activate the Pull-up or Pull down resistor for the current IO */ + if ((GPIO_Init->Mode & GPIO_MODE) != MODE_ANALOG) + { + temp = GPIOx->PUPDR; + temp &= ~(GPIO_PUPDR_PUPD0 << (position * 2U)); + temp |= ((GPIO_Init->Pull) << (position * 2U)); + GPIOx->PUPDR = temp; + } + + /* In case of Alternate function mode selection */ + if ((GPIO_Init->Mode & GPIO_MODE) == MODE_AF) + { + /* Check the Alternate function parameters */ + assert_param(IS_GPIO_AF_INSTANCE(GPIOx)); + assert_param(IS_GPIO_AF(GPIO_Init->Alternate)); + + /* Configure Alternate function mapped with the current IO */ + temp = GPIOx->AFR[position >> 3u]; + temp &= ~(0xFu << ((position & 0x07u) * 4u)); + temp |= ((GPIO_Init->Alternate) << ((position & 0x07u) * 4u)); + GPIOx->AFR[position >> 3u] = temp; + } + + /* Configure IO Direction mode (Input, Output, Alternate or Analog) */ + temp = GPIOx->MODER; + temp &= ~(GPIO_MODER_MODE0 << (position * 2u)); + temp |= ((GPIO_Init->Mode & GPIO_MODE) << (position * 2u)); + GPIOx->MODER = temp; + + /*--------------------- EXTI Mode Configuration ------------------------*/ + /* Configure the External Interrupt or event for the current IO */ + if ((GPIO_Init->Mode & EXTI_MODE) != 0x00u) + { + temp = SYSCFG->EXTICR[position >> 2u]; + temp &= ~(0x0FuL << (4u * (position & 0x03u))); + temp |= (GPIO_GET_INDEX(GPIOx) << (4u * (position & 0x03u))); + SYSCFG->EXTICR[position >> 2u] = temp; + + /* Clear Rising Falling edge configuration */ + temp = EXTI->RTSR1; + temp &= ~(iocurrent); + if ((GPIO_Init->Mode & TRIGGER_RISING) != 0x00u) + { + temp |= iocurrent; + } + EXTI->RTSR1 = temp; + + temp = EXTI->FTSR1; + temp &= ~(iocurrent); + if ((GPIO_Init->Mode & TRIGGER_FALLING) != 0x00u) + { + temp |= iocurrent; + } + EXTI->FTSR1 = temp; + + /* Clear EXTI line configuration */ + temp = EXTI->IMR1; + temp &= ~(iocurrent); + if ((GPIO_Init->Mode & EXTI_IT) != 0x00u) + { + temp |= iocurrent; + } + EXTI->IMR1 = temp; + + temp = EXTI->EMR1; + temp &= ~(iocurrent); + if ((GPIO_Init->Mode & EXTI_EVT) != 0x00u) + { + temp |= iocurrent; + } + EXTI->EMR1 = temp; + } + } + + position++; + } +} + +/** + * @brief De-initialize the GPIOx peripheral registers to their default reset values. + * @param GPIOx where x can be (A..H) to select the GPIO peripheral for STM32WBxx family + * @param GPIO_Pin specifies the port bit to be written. + * This parameter can be one of GPIO_PIN_x where x can be (0..15). + * @retval None + */ +void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin) +{ + uint32_t position = 0x00u; + uint32_t iocurrent; + uint32_t tmp; + + /* Check the parameters */ + assert_param(IS_GPIO_ALL_INSTANCE(GPIOx)); + assert_param(IS_GPIO_PIN(GPIO_Pin)); + + /* Configure the port pins */ + while ((GPIO_Pin >> position) != 0x00u) + { + /* Get current io position */ + iocurrent = (GPIO_Pin) & (1uL << position); + + if (iocurrent != 0x00u) + { + /*------------------------- EXTI Mode Configuration --------------------*/ + /* Clear the External Interrupt or Event for the current IO */ + + tmp = SYSCFG->EXTICR[position >> 2u]; + tmp &= (0x0FUL << (4u * (position & 0x03u))); + if (tmp == (GPIO_GET_INDEX(GPIOx) << (4u * (position & 0x03u)))) + { + /* Clear EXTI line configuration */ + EXTI->IMR1 &= ~(iocurrent); + EXTI->EMR1 &= ~(iocurrent); + + /* Clear Rising Falling edge configuration */ + EXTI->RTSR1 &= ~(iocurrent); + EXTI->FTSR1 &= ~(iocurrent); + + tmp = 0x0FuL << (4u * (position & 0x03u)); + SYSCFG->EXTICR[position >> 2u] &= ~tmp; + } + + /*------------------------- GPIO Mode Configuration --------------------*/ + /* Configure IO in Analog Mode */ + GPIOx->MODER |= (GPIO_MODER_MODE0 << (position * 2u)); + + /* Configure the default Alternate Function in current IO */ + GPIOx->AFR[position >> 3u] &= ~(0xFu << ((position & 0x07u) * 4u)) ; + + /* Deactivate the Pull-up and Pull-down resistor for the current IO */ + GPIOx->PUPDR &= ~(GPIO_PUPDR_PUPD0 << (position * 2u)); + + /* Configure the default value IO Output Type */ + GPIOx->OTYPER &= ~(GPIO_OTYPER_OT0 << position) ; + + /* Configure the default value for IO Speed */ + GPIOx->OSPEEDR &= ~(GPIO_OSPEEDR_OSPEED0 << (position * 2u)); + } + + position++; + } +} + +/** + * @} + */ + +/** @addtogroup GPIO_Exported_Functions_Group2 + * @brief GPIO Read, Write, Toggle, Lock and EXTI management functions. + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + +@endverbatim + * @{ + */ + +/** + * @brief Read the specified input port pin. + * @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32WBxx family + * @param GPIO_Pin specifies the port bit to read. + * This parameter can be GPIO_PIN_x where x can be (0..15). + * @retval The input port pin value. + */ +GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin) +{ + GPIO_PinState bitstatus; + + /* Check the parameters */ + assert_param(IS_GPIO_PIN(GPIO_Pin)); + + if ((GPIOx->IDR & GPIO_Pin) != 0x00u) + { + bitstatus = GPIO_PIN_SET; + } + else + { + bitstatus = GPIO_PIN_RESET; + } + return bitstatus; +} + +/** + * @brief Set or clear the selected data port bit. + * @note This function uses GPIOx_BSRR and GPIOx_BRR registers to allow atomic read/modify + * accesses. In this way, there is no risk of an IRQ occurring between + * the read and the modify access. + * @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32WBxx family + * @param GPIO_Pin specifies the port bit to be written. + * This parameter can be one of GPIO_PIN_x where x can be (0..15). + * @param PinState specifies the value to be written to the selected bit. + * This parameter can be one of the GPIO_PinState enum values: + * @arg GPIO_PIN_RESET: to clear the port pin + * @arg GPIO_PIN_SET: to set the port pin + * @retval None + */ +void HAL_GPIO_WritePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState) +{ + /* Check the parameters */ + assert_param(IS_GPIO_PIN(GPIO_Pin)); + assert_param(IS_GPIO_PIN_ACTION(PinState)); + + if (PinState != GPIO_PIN_RESET) + { + GPIOx->BSRR = (uint32_t)GPIO_Pin; + } + else + { + GPIOx->BRR = (uint32_t)GPIO_Pin; + } +} + +/** + * @brief Set and clear several pins of a dedicated port in same cycle. + * @note This function uses GPIOx_BSRR and GPIOx_BRR registers to allow atomic read/modify + * accesses. + * @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32WLxx family + * @param PinReset specifies the port bits to be reset + * This parameter can be any combination of GPIO_PIN_x where x can be (0..15) or zero. + * @param PinSet specifies the port bits to be set + * This parameter can be any combination of GPIO_PIN_x where x can be (0..15) or zero. + * @note Both PinReset and PinSet combinations shall not get any common bit, else + * assert would be triggered. + * @note At least one of the two parameters used to set or reset shall be different from zero. + * @retval None + */ +void HAL_GPIO_WriteMultipleStatePin(GPIO_TypeDef *GPIOx, uint16_t PinReset, uint16_t PinSet) +{ + uint32_t tmp; + + /* Check the parameters */ + /* Make sure at least one parameter is different from zero and that there is no common pin */ + assert_param(IS_GPIO_PIN((uint32_t)PinReset | (uint32_t)PinSet)); + assert_param(IS_GPIO_COMMON_PIN(PinReset, PinSet)); + + tmp = (((uint32_t)PinReset << 16) | PinSet); + GPIOx->BSRR = tmp; +} + +/** + * @brief Toggle the specified GPIO pin. + * @param GPIOx where x can be (A..H) to select the GPIO peripheral for STM32WBxx family + * @param GPIO_Pin specifies the pin to be toggled. + * @retval None + */ +void HAL_GPIO_TogglePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin) +{ + uint32_t odr; + + /* Check the parameters */ + assert_param(IS_GPIO_PIN(GPIO_Pin)); + + /* get current Output Data Register value */ + odr = GPIOx->ODR; + + /* Set selected pins that were at low level, and reset ones that were high */ + GPIOx->BSRR = ((odr & GPIO_Pin) << GPIO_NUMBER) | (~odr & GPIO_Pin); +} + +/** + * @brief Lock GPIO Pins configuration registers. + * @note The locked registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, + * GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH. + * @note The configuration of the locked GPIO pins can no longer be modified + * until the next reset. + * @param GPIOx where x can be (A..H) to select the GPIO peripheral for STM32WBxx family + * @param GPIO_Pin specifies the port bits to be locked. + * This parameter can be any combination of GPIO_PIN_x where x can be (0..15). + * @retval None + */ +HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin) +{ + __IO uint32_t tmp = GPIO_LCKR_LCKK; + + /* Check the parameters */ + assert_param(IS_GPIO_LOCK_INSTANCE(GPIOx)); + assert_param(IS_GPIO_PIN(GPIO_Pin)); + + /* Apply lock key write sequence */ + tmp |= GPIO_Pin; + /* Set LCKx bit(s): LCKK='1' + LCK[15-0] */ + GPIOx->LCKR = tmp; + /* Reset LCKx bit(s): LCKK='0' + LCK[15-0] */ + GPIOx->LCKR = GPIO_Pin; + /* Set LCKx bit(s): LCKK='1' + LCK[15-0] */ + GPIOx->LCKR = tmp; + /* Read LCKK register. This read is mandatory to complete key lock sequence */ + tmp = GPIOx->LCKR; + + /* read again in order to confirm lock is active */ + if ((GPIOx->LCKR & GPIO_LCKR_LCKK) != 0x00u) + { + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Handle EXTI interrupt request. + * @param GPIO_Pin Specifies the port pin connected to corresponding EXTI line. + * @retval None + */ +void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin) +{ + /* EXTI line interrupt detected */ + if (__HAL_GPIO_EXTI_GET_IT(GPIO_Pin) != 0x00u) + { + __HAL_GPIO_EXTI_CLEAR_IT(GPIO_Pin); + HAL_GPIO_EXTI_Callback(GPIO_Pin); + } +} + +/** + * @brief EXTI line detection callback. + * @param GPIO_Pin Specifies the port pin connected to corresponding EXTI line. + * @retval None + */ +__weak void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(GPIO_Pin); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_GPIO_EXTI_Callback could be implemented in the user file + */ +} + +/** + * @} + */ + + +/** + * @} + */ + +#endif /* HAL_GPIO_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_hsem.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_hsem.c new file mode 100644 index 0000000..7f6883f --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_hsem.c @@ -0,0 +1,369 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_hsem.c + * @author MCD Application Team + * @brief HSEM HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the semaphore peripheral: + * + Semaphore Take function (2-Step Procedure) , non blocking + * + Semaphore FastTake function (1-Step Procedure) , non blocking + * + Semaphore Status check + * + Semaphore Clear Key Set and Get + * + Release and release all functions + * + Semaphore notification enabling and disabling and callnack functions + * + IRQ handler management + * + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#)Take a semaphore In 2-Step mode Using function HAL_HSEM_Take. This function takes as parameters : + (++) the semaphore ID from 0 to 31 + (++) the process ID from 0 to 255 + (#) Fast Take semaphore In 1-Step mode Using function HAL_HSEM_FastTake. This function takes as parameter : + (++) the semaphore ID from 0_ID to 31. Note that the process ID value is implicitly assumed as zero + (#) Check if a semaphore is Taken using function HAL_HSEM_IsSemTaken. This function takes as parameter : + (++) the semaphore ID from 0_ID to 31 + (++) It returns 1 if the given semaphore is taken otherwise (Free) zero + (#)Release a semaphore using function with HAL_HSEM_Release. This function takes as parameters : + (++) the semaphore ID from 0 to 31 + (++) the process ID from 0 to 255: + (++) Note: If ProcessID and MasterID match, semaphore is freed, and an interrupt + may be generated when enabled (notification activated). If ProcessID or MasterID does not match, + semaphore remains taken (locked) + + (#)Release all semaphores at once taken by a given Master using function HAL_HSEM_Release_All + This function takes as parameters : + (++) the Release Key (value from 0 to 0xFFFF) can be Set or Get respectively by + HAL_HSEM_SetClearKey() or HAL_HSEM_GetClearKey functions + (++) the Master ID: + (++) Note: If the Key and MasterID match, all semaphores taken by the given CPU that corresponds + to MasterID will be freed, and an interrupt may be generated when enabled (notification activated). If the + Key or the MasterID doesn't match, semaphores remains taken (locked) + + (#)Semaphores Release all key functions: + (++) HAL_HSEM_SetClearKey() to set semaphore release all Key + (++) HAL_HSEM_GetClearKey() to get release all Key + (#)Semaphores notification functions : + (++) HAL_HSEM_ActivateNotification to activate a notification callback on + a given semaphores Mask (bitfield). When one or more semaphores defined by the mask are released + the callback HAL_HSEM_FreeCallback will be asserted giving as parameters a mask of the released + semaphores (bitfield). + + (++) HAL_HSEM_DeactivateNotification to deactivate the notification of a given semaphores Mask (bitfield). + (++) See the description of the macro __HAL_HSEM_SEMID_TO_MASK to check how to calculate a semaphore mask + Used by the notification functions + *** HSEM HAL driver macros list *** + ============================================= + [..] Below the list of most used macros in HSEM HAL driver. + + (+) __HAL_HSEM_SEMID_TO_MASK: Helper macro to convert a Semaphore ID to a Mask. + [..] Example of use : + [..] mask = __HAL_HSEM_SEMID_TO_MASK(8) | __HAL_HSEM_SEMID_TO_MASK(21) | __HAL_HSEM_SEMID_TO_MASK(25). + [..] All next macros take as parameter a semaphore Mask (bitfiled) that can be constructed using __HAL_HSEM_SEMID_TO_MASK as the above example. + (+) __HAL_HSEM_ENABLE_IT: Enable the specified semaphores Mask interrupts. + (+) __HAL_HSEM_DISABLE_IT: Disable the specified semaphores Mask interrupts. + (+) __HAL_HSEM_GET_IT: Checks whether the specified semaphore interrupt has occurred or not. + (+) __HAL_HSEM_GET_FLAG: Get the semaphores status release flags. + (+) __HAL_HSEM_CLEAR_FLAG: Clear the semaphores status release flags. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @defgroup HSEM HSEM + * @brief HSEM HAL module driver + * @{ + */ + +#ifdef HAL_HSEM_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +#if defined(DUAL_CORE) +/** @defgroup HSEM_Private_Constants HSEM Private Constants + * @{ + */ + +#ifndef HSEM_R_MASTERID +#define HSEM_R_MASTERID HSEM_R_COREID +#endif + +#ifndef HSEM_RLR_MASTERID +#define HSEM_RLR_MASTERID HSEM_RLR_COREID +#endif + +#ifndef HSEM_CR_MASTERID +#define HSEM_CR_MASTERID HSEM_CR_COREID +#endif + +/** + * @} + */ +#endif /* DUAL_CORE */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup HSEM_Exported_Functions HSEM Exported Functions + * @{ + */ + +/** @defgroup HSEM_Exported_Functions_Group1 Take and Release functions + * @brief HSEM Take and Release functions + * +@verbatim + ============================================================================== + ##### HSEM Take and Release functions ##### + ============================================================================== +[..] This section provides functions allowing to: + (+) Take a semaphore with 2 Step method + (+) Fast Take a semaphore with 1 Step method + (+) Check semaphore state Taken or not + (+) Release a semaphore + (+) Release all semaphore at once + +@endverbatim + * @{ + */ + + +/** + * @brief Take a semaphore in 2 Step mode. + * @param SemID: semaphore ID from 0 to 31 + * @param ProcessID: Process ID from 0 to 255 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HSEM_Take(uint32_t SemID, uint32_t ProcessID) +{ + /* Check the parameters */ + assert_param(IS_HSEM_SEMID(SemID)); + assert_param(IS_HSEM_PROCESSID(ProcessID)); + + /* First step write R register with MasterID, processID and take bit=1*/ + HSEM->R[SemID] = (ProcessID | HSEM_CR_COREID_CURRENT | HSEM_R_LOCK); + + /* second step : read the R register . Take achieved if MasterID and processID match and take bit set to 1 */ + if (HSEM->R[SemID] == (ProcessID | HSEM_CR_COREID_CURRENT | HSEM_R_LOCK)) + { + /*take success when MasterID and ProcessID match and take bit set*/ + return HAL_OK; + } + + /* Semaphore take fails*/ + return HAL_ERROR; +} + +/** + * @brief Fast Take a semaphore with 1 Step mode. + * @param SemID: semaphore ID from 0 to 31 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HSEM_FastTake(uint32_t SemID) +{ + /* Check the parameters */ + assert_param(IS_HSEM_SEMID(SemID)); + + /* Read the RLR register to take the semaphore */ + if (HSEM->RLR[SemID] == (HSEM_CR_COREID_CURRENT | HSEM_RLR_LOCK)) + { + /*take success when MasterID match and take bit set*/ + return HAL_OK; + } + + /* Semaphore take fails */ + return HAL_ERROR; +} +/** + * @brief Check semaphore state Taken or not. + * @param SemID: semaphore ID + * @retval HAL HSEM state + */ +uint32_t HAL_HSEM_IsSemTaken(uint32_t SemID) +{ + return (((HSEM->R[SemID] & HSEM_R_LOCK) != 0U) ? 1UL : 0UL); +} + + +/** + * @brief Release a semaphore. + * @param SemID: semaphore ID from 0 to 31 + * @param ProcessID: Process ID from 0 to 255 + * @retval None + */ +void HAL_HSEM_Release(uint32_t SemID, uint32_t ProcessID) +{ + /* Check the parameters */ + assert_param(IS_HSEM_SEMID(SemID)); + assert_param(IS_HSEM_PROCESSID(ProcessID)); + + /* Clear the semaphore by writing to the R register : the MasterID , the processID and take bit = 0 */ + HSEM->R[SemID] = (ProcessID | HSEM_CR_COREID_CURRENT); + +} + +/** + * @brief Release All semaphore used by a given Master . + * @param Key: Semaphore Key , value from 0 to 0xFFFF + * @param CoreID: CoreID of the CPU that is using semaphores to be released + * @retval None + */ +void HAL_HSEM_ReleaseAll(uint32_t Key, uint32_t CoreID) +{ + assert_param(IS_HSEM_KEY(Key)); + assert_param(IS_HSEM_COREID(CoreID)); + + HSEM->CR = ((Key << HSEM_CR_KEY_Pos) | (CoreID << HSEM_CR_COREID_Pos)); +} + +/** + * @} + */ + +/** @defgroup HSEM_Exported_Functions_Group2 HSEM Set and Get Key functions + * @brief HSEM Set and Get Key functions. + * +@verbatim + ============================================================================== + ##### HSEM Set and Get Key functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Set semaphore Key + (+) Get semaphore Key +@endverbatim + + * @{ + */ + +/** + * @brief Set semaphore Key . + * @param Key: Semaphore Key , value from 0 to 0xFFFF + * @retval None + */ +void HAL_HSEM_SetClearKey(uint32_t Key) +{ + assert_param(IS_HSEM_KEY(Key)); + + MODIFY_REG(HSEM->KEYR, HSEM_KEYR_KEY, (Key << HSEM_KEYR_KEY_Pos)); + +} + +/** + * @brief Get semaphore Key . + * @retval Semaphore Key , value from 0 to 0xFFFF + */ +uint32_t HAL_HSEM_GetClearKey(void) +{ + return (HSEM->KEYR >> HSEM_KEYR_KEY_Pos); +} + +/** + * @} + */ + +/** @defgroup HSEM_Exported_Functions_Group3 HSEM IRQ handler management + * @brief HSEM Notification functions. + * +@verbatim + ============================================================================== + ##### HSEM IRQ handler management and Notification functions ##### + ============================================================================== +[..] This section provides HSEM IRQ handler and Notification function. + +@endverbatim + * @{ + */ + +/** + * @brief Activate Semaphore release Notification for a given Semaphores Mask . + * @param SemMask: Mask of Released semaphores + * @retval Semaphore Key + */ +void HAL_HSEM_ActivateNotification(uint32_t SemMask) +{ + HSEM_COMMON->IER |= SemMask; +} + +/** + * @brief Deactivate Semaphore release Notification for a given Semaphores Mask . + * @param SemMask: Mask of Released semaphores + * @retval Semaphore Key + */ +void HAL_HSEM_DeactivateNotification(uint32_t SemMask) +{ + HSEM_COMMON->IER &= ~SemMask; +} + +/** + * @brief This function handles HSEM interrupt request + * @retval None + */ +void HAL_HSEM_IRQHandler(void) +{ + uint32_t statusreg; + /* Get the list of masked freed semaphores*/ + statusreg = HSEM_COMMON->MISR; + + /*Disable Interrupts*/ + HSEM_COMMON->IER &= ~((uint32_t)statusreg); + + /*Clear Flags*/ + HSEM_COMMON->ICR = ((uint32_t)statusreg); + + /* Call FreeCallback */ + HAL_HSEM_FreeCallback(statusreg); +} + +/** + * @brief Semaphore Released Callback. + * @param SemMask: Mask of Released semaphores + * @retval None + */ +__weak void HAL_HSEM_FreeCallback(uint32_t SemMask) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(SemMask); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_HSEM_FreeCallback can be implemented in the user file + */ +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_HSEM_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_i2c.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_i2c.c new file mode 100644 index 0000000..91993d6 --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_i2c.c @@ -0,0 +1,7561 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_i2c.c + * @author MCD Application Team + * @brief I2C HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Inter Integrated Circuit (I2C) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral State and Errors functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The I2C HAL driver can be used as follows: + + (#) Declare a I2C_HandleTypeDef handle structure, for example: + I2C_HandleTypeDef hi2c; + + (#)Initialize the I2C low level resources by implementing the HAL_I2C_MspInit() API: + (##) Enable the I2Cx interface clock + (##) I2C pins configuration + (+++) Enable the clock for the I2C GPIOs + (+++) Configure I2C pins as alternate function open-drain + (##) NVIC configuration if you need to use interrupt process + (+++) Configure the I2Cx interrupt priority + (+++) Enable the NVIC I2C IRQ Channel + (##) DMA Configuration if you need to use DMA process + (+++) Declare a DMA_HandleTypeDef handle structure for + the transmit or receive channel + (+++) Enable the DMAx interface clock using + (+++) Configure the DMA handle parameters + (+++) Configure the DMA Tx or Rx channel + (+++) Associate the initialized DMA handle to the hi2c DMA Tx or Rx handle + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on + the DMA Tx or Rx channel + + (#) Configure the Communication Clock Timing, Own Address1, Master Addressing mode, Dual Addressing mode, + Own Address2, Own Address2 Mask, General call and Nostretch mode in the hi2c Init structure. + + (#) Initialize the I2C registers by calling the HAL_I2C_Init(), configures also the low level Hardware + (GPIO, CLOCK, NVIC...etc) by calling the customized HAL_I2C_MspInit(&hi2c) API. + + (#) To check if target device is ready for communication, use the function HAL_I2C_IsDeviceReady() + + (#) For I2C IO and IO MEM operations, three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Transmit in master mode an amount of data in blocking mode using HAL_I2C_Master_Transmit() + (+) Receive in master mode an amount of data in blocking mode using HAL_I2C_Master_Receive() + (+) Transmit in slave mode an amount of data in blocking mode using HAL_I2C_Slave_Transmit() + (+) Receive in slave mode an amount of data in blocking mode using HAL_I2C_Slave_Receive() + + *** Polling mode IO MEM operation *** + ===================================== + [..] + (+) Write an amount of data in blocking mode to a specific memory address using HAL_I2C_Mem_Write() + (+) Read an amount of data in blocking mode from a specific memory address using HAL_I2C_Mem_Read() + + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Transmit in master mode an amount of data in non-blocking mode using HAL_I2C_Master_Transmit_IT() + (+) At transmission end of transfer, HAL_I2C_MasterTxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MasterTxCpltCallback() + (+) Receive in master mode an amount of data in non-blocking mode using HAL_I2C_Master_Receive_IT() + (+) At reception end of transfer, HAL_I2C_MasterRxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MasterRxCpltCallback() + (+) Transmit in slave mode an amount of data in non-blocking mode using HAL_I2C_Slave_Transmit_IT() + (+) At transmission end of transfer, HAL_I2C_SlaveTxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback() + (+) Receive in slave mode an amount of data in non-blocking mode using HAL_I2C_Slave_Receive_IT() + (+) At reception end of transfer, HAL_I2C_SlaveRxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback() + (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and users can + add their own code by customization of function pointer HAL_I2C_ErrorCallback() + (+) Abort a master or memory I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT() + (+) End of abort process, HAL_I2C_AbortCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_AbortCpltCallback() + (+) Discard a slave I2C process communication using __HAL_I2C_GENERATE_NACK() macro. + This action will inform Master to generate a Stop condition to discard the communication. + + + *** Interrupt mode or DMA mode IO sequential operation *** + ========================================================== + [..] + (@) These interfaces allow to manage a sequential transfer with a repeated start condition + when a direction change during transfer + [..] + (+) A specific option field manage the different steps of a sequential transfer + (+) Option field values are defined through I2C_XFEROPTIONS and are listed below: + (++) I2C_FIRST_AND_LAST_FRAME: No sequential usage, functional is same as associated interfaces in + no sequential mode + (++) I2C_FIRST_FRAME: Sequential usage, this option allow to manage a sequence with start condition, address + and data to transfer without a final stop condition + (++) I2C_FIRST_AND_NEXT_FRAME: Sequential usage (Master only), this option allow to manage a sequence with + start condition, address and data to transfer without a final stop condition, + an then permit a call the same master sequential interface several times + (like HAL_I2C_Master_Seq_Transmit_IT() then HAL_I2C_Master_Seq_Transmit_IT() + or HAL_I2C_Master_Seq_Transmit_DMA() then HAL_I2C_Master_Seq_Transmit_DMA()) + (++) I2C_NEXT_FRAME: Sequential usage, this option allow to manage a sequence with a restart condition, address + and with new data to transfer if the direction change or manage only the new data to + transfer + if no direction change and without a final stop condition in both cases + (++) I2C_LAST_FRAME: Sequential usage, this option allow to manage a sequance with a restart condition, address + and with new data to transfer if the direction change or manage only the new data to + transfer + if no direction change and with a final stop condition in both cases + (++) I2C_LAST_FRAME_NO_STOP: Sequential usage (Master only), this option allow to manage a restart condition + after several call of the same master sequential interface several times + (link with option I2C_FIRST_AND_NEXT_FRAME). + Usage can, transfer several bytes one by one using + HAL_I2C_Master_Seq_Transmit_IT + or HAL_I2C_Master_Seq_Receive_IT + or HAL_I2C_Master_Seq_Transmit_DMA + or HAL_I2C_Master_Seq_Receive_DMA + with option I2C_FIRST_AND_NEXT_FRAME then I2C_NEXT_FRAME. + Then usage of this option I2C_LAST_FRAME_NO_STOP at the last Transmit or + Receive sequence permit to call the opposite interface Receive or Transmit + without stopping the communication and so generate a restart condition. + (++) I2C_OTHER_FRAME: Sequential usage (Master only), this option allow to manage a restart condition after + each call of the same master sequential + interface. + Usage can, transfer several bytes one by one with a restart with slave address between + each bytes using + HAL_I2C_Master_Seq_Transmit_IT + or HAL_I2C_Master_Seq_Receive_IT + or HAL_I2C_Master_Seq_Transmit_DMA + or HAL_I2C_Master_Seq_Receive_DMA + with option I2C_FIRST_FRAME then I2C_OTHER_FRAME. + Then usage of this option I2C_OTHER_AND_LAST_FRAME at the last frame to help automatic + generation of STOP condition. + + (+) Different sequential I2C interfaces are listed below: + (++) Sequential transmit in master I2C mode an amount of data in non-blocking mode using + HAL_I2C_Master_Seq_Transmit_IT() or using HAL_I2C_Master_Seq_Transmit_DMA() + (+++) At transmission end of current frame transfer, HAL_I2C_MasterTxCpltCallback() is executed and + users can add their own code by customization of function pointer HAL_I2C_MasterTxCpltCallback() + (++) Sequential receive in master I2C mode an amount of data in non-blocking mode using + HAL_I2C_Master_Seq_Receive_IT() or using HAL_I2C_Master_Seq_Receive_DMA() + (+++) At reception end of current frame transfer, HAL_I2C_MasterRxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MasterRxCpltCallback() + (++) Abort a master or memory IT or DMA I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT() + (+++) End of abort process, HAL_I2C_AbortCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_AbortCpltCallback() + (++) Enable/disable the Address listen mode in slave I2C mode using HAL_I2C_EnableListen_IT() + HAL_I2C_DisableListen_IT() + (+++) When address slave I2C match, HAL_I2C_AddrCallback() is executed and users can + add their own code to check the Address Match Code and the transmission direction request by master + (Write/Read). + (+++) At Listen mode end HAL_I2C_ListenCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_ListenCpltCallback() + (++) Sequential transmit in slave I2C mode an amount of data in non-blocking mode using + HAL_I2C_Slave_Seq_Transmit_IT() or using HAL_I2C_Slave_Seq_Transmit_DMA() + (+++) At transmission end of current frame transfer, HAL_I2C_SlaveTxCpltCallback() is executed and + users can add their own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback() + (++) Sequential receive in slave I2C mode an amount of data in non-blocking mode using + HAL_I2C_Slave_Seq_Receive_IT() or using HAL_I2C_Slave_Seq_Receive_DMA() + (+++) At reception end of current frame transfer, HAL_I2C_SlaveRxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback() + (++) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and users can + add their own code by customization of function pointer HAL_I2C_ErrorCallback() + (++) Discard a slave I2C process communication using __HAL_I2C_GENERATE_NACK() macro. + This action will inform Master to generate a Stop condition to discard the communication. + + *** Interrupt mode IO MEM operation *** + ======================================= + [..] + (+) Write an amount of data in non-blocking mode with Interrupt to a specific memory address using + HAL_I2C_Mem_Write_IT() + (+) At Memory end of write transfer, HAL_I2C_MemTxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MemTxCpltCallback() + (+) Read an amount of data in non-blocking mode with Interrupt from a specific memory address using + HAL_I2C_Mem_Read_IT() + (+) At Memory end of read transfer, HAL_I2C_MemRxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MemRxCpltCallback() + (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and users can + add their own code by customization of function pointer HAL_I2C_ErrorCallback() + + *** DMA mode IO operation *** + ============================== + [..] + (+) Transmit in master mode an amount of data in non-blocking mode (DMA) using + HAL_I2C_Master_Transmit_DMA() + (+) At transmission end of transfer, HAL_I2C_MasterTxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MasterTxCpltCallback() + (+) Receive in master mode an amount of data in non-blocking mode (DMA) using + HAL_I2C_Master_Receive_DMA() + (+) At reception end of transfer, HAL_I2C_MasterRxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MasterRxCpltCallback() + (+) Transmit in slave mode an amount of data in non-blocking mode (DMA) using + HAL_I2C_Slave_Transmit_DMA() + (+) At transmission end of transfer, HAL_I2C_SlaveTxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback() + (+) Receive in slave mode an amount of data in non-blocking mode (DMA) using + HAL_I2C_Slave_Receive_DMA() + (+) At reception end of transfer, HAL_I2C_SlaveRxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback() + (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and users can + add their own code by customization of function pointer HAL_I2C_ErrorCallback() + (+) Abort a master or memory I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT() + (+) End of abort process, HAL_I2C_AbortCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_AbortCpltCallback() + (+) Discard a slave I2C process communication using __HAL_I2C_GENERATE_NACK() macro. + This action will inform Master to generate a Stop condition to discard the communication. + + *** DMA mode IO MEM operation *** + ================================= + [..] + (+) Write an amount of data in non-blocking mode with DMA to a specific memory address using + HAL_I2C_Mem_Write_DMA() + (+) At Memory end of write transfer, HAL_I2C_MemTxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MemTxCpltCallback() + (+) Read an amount of data in non-blocking mode with DMA from a specific memory address using + HAL_I2C_Mem_Read_DMA() + (+) At Memory end of read transfer, HAL_I2C_MemRxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MemRxCpltCallback() + (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and users can + add their own code by customization of function pointer HAL_I2C_ErrorCallback() + + + *** I2C HAL driver macros list *** + ================================== + [..] + Below the list of most used macros in I2C HAL driver. + + (+) __HAL_I2C_ENABLE: Enable the I2C peripheral + (+) __HAL_I2C_DISABLE: Disable the I2C peripheral + (+) __HAL_I2C_GENERATE_NACK: Generate a Non-Acknowledge I2C peripheral in Slave mode + (+) __HAL_I2C_GET_FLAG: Check whether the specified I2C flag is set or not + (+) __HAL_I2C_CLEAR_FLAG: Clear the specified I2C pending flag + (+) __HAL_I2C_ENABLE_IT: Enable the specified I2C interrupt + (+) __HAL_I2C_DISABLE_IT: Disable the specified I2C interrupt + + *** Callback registration *** + ============================================= + [..] + The compilation flag USE_HAL_I2C_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + Use Functions HAL_I2C_RegisterCallback() or HAL_I2C_RegisterAddrCallback() + to register an interrupt callback. + [..] + Function HAL_I2C_RegisterCallback() allows to register following callbacks: + (+) MasterTxCpltCallback : callback for Master transmission end of transfer. + (+) MasterRxCpltCallback : callback for Master reception end of transfer. + (+) SlaveTxCpltCallback : callback for Slave transmission end of transfer. + (+) SlaveRxCpltCallback : callback for Slave reception end of transfer. + (+) ListenCpltCallback : callback for end of listen mode. + (+) MemTxCpltCallback : callback for Memory transmission end of transfer. + (+) MemRxCpltCallback : callback for Memory reception end of transfer. + (+) ErrorCallback : callback for error detection. + (+) AbortCpltCallback : callback for abort completion process. + (+) MspInitCallback : callback for Msp Init. + (+) MspDeInitCallback : callback for Msp DeInit. + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + [..] + For specific callback AddrCallback use dedicated register callbacks : HAL_I2C_RegisterAddrCallback(). + [..] + Use function HAL_I2C_UnRegisterCallback to reset a callback to the default + weak function. + HAL_I2C_UnRegisterCallback takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) MasterTxCpltCallback : callback for Master transmission end of transfer. + (+) MasterRxCpltCallback : callback for Master reception end of transfer. + (+) SlaveTxCpltCallback : callback for Slave transmission end of transfer. + (+) SlaveRxCpltCallback : callback for Slave reception end of transfer. + (+) ListenCpltCallback : callback for end of listen mode. + (+) MemTxCpltCallback : callback for Memory transmission end of transfer. + (+) MemRxCpltCallback : callback for Memory reception end of transfer. + (+) ErrorCallback : callback for error detection. + (+) AbortCpltCallback : callback for abort completion process. + (+) MspInitCallback : callback for Msp Init. + (+) MspDeInitCallback : callback for Msp DeInit. + [..] + For callback AddrCallback use dedicated register callbacks : HAL_I2C_UnRegisterAddrCallback(). + [..] + By default, after the HAL_I2C_Init() and when the state is HAL_I2C_STATE_RESET + all callbacks are set to the corresponding weak functions: + examples HAL_I2C_MasterTxCpltCallback(), HAL_I2C_MasterRxCpltCallback(). + Exception done for MspInit and MspDeInit functions that are + reset to the legacy weak functions in the HAL_I2C_Init()/ HAL_I2C_DeInit() only when + these callbacks are null (not registered beforehand). + If MspInit or MspDeInit are not null, the HAL_I2C_Init()/ HAL_I2C_DeInit() + keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. + [..] + Callbacks can be registered/unregistered in HAL_I2C_STATE_READY state only. + Exception done MspInit/MspDeInit functions that can be registered/unregistered + in HAL_I2C_STATE_READY or HAL_I2C_STATE_RESET state, + thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. + Then, the user first registers the MspInit/MspDeInit user callbacks + using HAL_I2C_RegisterCallback() before calling HAL_I2C_DeInit() + or HAL_I2C_Init() function. + [..] + When the compilation flag USE_HAL_I2C_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all callbacks + are set to the corresponding weak functions. + + [..] + (@) You can refer to the I2C HAL driver header file for more useful macros + + @endverbatim + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @defgroup I2C I2C + * @brief I2C HAL module driver + * @{ + */ + +#ifdef HAL_I2C_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @defgroup I2C_Private_Define I2C Private Define + * @{ + */ +#define TIMING_CLEAR_MASK (0xF0FFFFFFU) /*!< I2C TIMING clear register Mask */ +#define I2C_TIMEOUT_ADDR (10000U) /*!< 10 s */ +#define I2C_TIMEOUT_BUSY (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_DIR (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_RXNE (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_STOPF (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_TC (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_TCR (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_TXIS (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_FLAG (25U) /*!< 25 ms */ + +#define MAX_NBYTE_SIZE 255U +#define SLAVE_ADDR_SHIFT 7U +#define SLAVE_ADDR_MSK 0x06U + +/* Private define for @ref PreviousState usage */ +#define I2C_STATE_MSK ((uint32_t)((uint32_t)((uint32_t)HAL_I2C_STATE_BUSY_TX | \ + (uint32_t)HAL_I2C_STATE_BUSY_RX) & \ + (uint32_t)(~((uint32_t)HAL_I2C_STATE_READY)))) +/*!< Mask State define, keep only RX and TX bits */ +#define I2C_STATE_NONE ((uint32_t)(HAL_I2C_MODE_NONE)) +/*!< Default Value */ +#define I2C_STATE_MASTER_BUSY_TX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | \ + (uint32_t)HAL_I2C_MODE_MASTER)) +/*!< Master Busy TX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_MASTER_BUSY_RX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | \ + (uint32_t)HAL_I2C_MODE_MASTER)) +/*!< Master Busy RX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_SLAVE_BUSY_TX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | \ + (uint32_t)HAL_I2C_MODE_SLAVE)) +/*!< Slave Busy TX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_SLAVE_BUSY_RX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | \ + (uint32_t)HAL_I2C_MODE_SLAVE)) +/*!< Slave Busy RX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_MEM_BUSY_TX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | \ + (uint32_t)HAL_I2C_MODE_MEM)) +/*!< Memory Busy TX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_MEM_BUSY_RX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | \ + (uint32_t)HAL_I2C_MODE_MEM)) +/*!< Memory Busy RX, combinaison of State LSB and Mode enum */ + + +/* Private define to centralize the enable/disable of Interrupts */ +#define I2C_XFER_TX_IT (uint16_t)(0x0001U) /*!< Bit field can be combinated with + @ref I2C_XFER_LISTEN_IT */ +#define I2C_XFER_RX_IT (uint16_t)(0x0002U) /*!< Bit field can be combinated with + @ref I2C_XFER_LISTEN_IT */ +#define I2C_XFER_LISTEN_IT (uint16_t)(0x8000U) /*!< Bit field can be combinated with @ref I2C_XFER_TX_IT + and @ref I2C_XFER_RX_IT */ + +#define I2C_XFER_ERROR_IT (uint16_t)(0x0010U) /*!< Bit definition to manage addition of global Error + and NACK treatment */ +#define I2C_XFER_CPLT_IT (uint16_t)(0x0020U) /*!< Bit definition to manage only STOP evenement */ +#define I2C_XFER_RELOAD_IT (uint16_t)(0x0040U) /*!< Bit definition to manage only Reload of NBYTE */ + +/* Private define Sequential Transfer Options default/reset value */ +#define I2C_NO_OPTION_FRAME (0xFFFF0000U) +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup I2C_Private_Macro + * @{ + */ +#if defined(HAL_DMA_MODULE_ENABLED) +/* Macro to get remaining data to transfer on DMA side */ +#define I2C_GET_DMA_REMAIN_DATA(__HANDLE__) __HAL_DMA_GET_COUNTER(__HANDLE__) +#endif /* HAL_DMA_MODULE_ENABLED */ +/** + * @} + */ + +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ + +/** @defgroup I2C_Private_Functions I2C Private Functions + * @{ + */ +#if defined(HAL_DMA_MODULE_ENABLED) +/* Private functions to handle DMA transfer */ +static void I2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMAError(DMA_HandleTypeDef *hdma); +static void I2C_DMAAbort(DMA_HandleTypeDef *hdma); + +#endif /* HAL_DMA_MODULE_ENABLED */ + +/* Private functions to handle IT transfer */ +static void I2C_ITAddrCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); +static void I2C_ITMasterSeqCplt(I2C_HandleTypeDef *hi2c); +static void I2C_ITSlaveSeqCplt(I2C_HandleTypeDef *hi2c); +static void I2C_ITMasterCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); +static void I2C_ITSlaveCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); +static void I2C_ITListenCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); +static void I2C_ITError(I2C_HandleTypeDef *hi2c, uint32_t ErrorCode); + +/* Private functions to handle IT transfer */ +static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, + uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, + uint32_t Tickstart); +static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, + uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, + uint32_t Tickstart); + +/* Private functions for I2C transfer IRQ handler */ +static HAL_StatusTypeDef I2C_Master_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources); +static HAL_StatusTypeDef I2C_Mem_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources); +static HAL_StatusTypeDef I2C_Slave_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources); +#if defined(HAL_DMA_MODULE_ENABLED) +static HAL_StatusTypeDef I2C_Master_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources); +static HAL_StatusTypeDef I2C_Mem_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources); +static HAL_StatusTypeDef I2C_Slave_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources); +#endif /* HAL_DMA_MODULE_ENABLED */ + +/* Private functions to handle flags during polling transfer */ +static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, + uint32_t Timeout, uint32_t Tickstart); +static HAL_StatusTypeDef I2C_WaitOnTXISFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, + uint32_t Tickstart); +static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, + uint32_t Tickstart); +static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, + uint32_t Tickstart); +static HAL_StatusTypeDef I2C_IsErrorOccurred(I2C_HandleTypeDef *hi2c, uint32_t Timeout, + uint32_t Tickstart); + +/* Private functions to centralize the enable/disable of Interrupts */ +static void I2C_Enable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest); +static void I2C_Disable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest); + +/* Private function to treat different error callback */ +static void I2C_TreatErrorCallback(I2C_HandleTypeDef *hi2c); + +/* Private function to flush TXDR register */ +static void I2C_Flush_TXDR(I2C_HandleTypeDef *hi2c); + +/* Private function to handle start, restart or stop a transfer */ +static void I2C_TransferConfig(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t Size, uint32_t Mode, + uint32_t Request); + +/* Private function to Convert Specific options */ +static void I2C_ConvertOtherXferOptions(I2C_HandleTypeDef *hi2c); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup I2C_Exported_Functions I2C Exported Functions + * @{ + */ + +/** @defgroup I2C_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + deinitialize the I2Cx peripheral: + + (+) User must Implement HAL_I2C_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). + + (+) Call the function HAL_I2C_Init() to configure the selected device with + the selected configuration: + (++) Clock Timing + (++) Own Address 1 + (++) Addressing mode (Master, Slave) + (++) Dual Addressing mode + (++) Own Address 2 + (++) Own Address 2 Mask + (++) General call mode + (++) Nostretch mode + + (+) Call the function HAL_I2C_DeInit() to restore the default configuration + of the selected I2Cx peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the I2C according to the specified parameters + * in the I2C_InitTypeDef and initialize the associated handle. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c) +{ + /* Check the I2C handle allocation */ + if (hi2c == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_I2C_OWN_ADDRESS1(hi2c->Init.OwnAddress1)); + assert_param(IS_I2C_ADDRESSING_MODE(hi2c->Init.AddressingMode)); + assert_param(IS_I2C_DUAL_ADDRESS(hi2c->Init.DualAddressMode)); + assert_param(IS_I2C_OWN_ADDRESS2(hi2c->Init.OwnAddress2)); + assert_param(IS_I2C_OWN_ADDRESS2_MASK(hi2c->Init.OwnAddress2Masks)); + assert_param(IS_I2C_GENERAL_CALL(hi2c->Init.GeneralCallMode)); + assert_param(IS_I2C_NO_STRETCH(hi2c->Init.NoStretchMode)); + + if (hi2c->State == HAL_I2C_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hi2c->Lock = HAL_UNLOCKED; + +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + /* Init the I2C Callback settings */ + hi2c->MasterTxCpltCallback = HAL_I2C_MasterTxCpltCallback; /* Legacy weak MasterTxCpltCallback */ + hi2c->MasterRxCpltCallback = HAL_I2C_MasterRxCpltCallback; /* Legacy weak MasterRxCpltCallback */ + hi2c->SlaveTxCpltCallback = HAL_I2C_SlaveTxCpltCallback; /* Legacy weak SlaveTxCpltCallback */ + hi2c->SlaveRxCpltCallback = HAL_I2C_SlaveRxCpltCallback; /* Legacy weak SlaveRxCpltCallback */ + hi2c->ListenCpltCallback = HAL_I2C_ListenCpltCallback; /* Legacy weak ListenCpltCallback */ + hi2c->MemTxCpltCallback = HAL_I2C_MemTxCpltCallback; /* Legacy weak MemTxCpltCallback */ + hi2c->MemRxCpltCallback = HAL_I2C_MemRxCpltCallback; /* Legacy weak MemRxCpltCallback */ + hi2c->ErrorCallback = HAL_I2C_ErrorCallback; /* Legacy weak ErrorCallback */ + hi2c->AbortCpltCallback = HAL_I2C_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + hi2c->AddrCallback = HAL_I2C_AddrCallback; /* Legacy weak AddrCallback */ + + if (hi2c->MspInitCallback == NULL) + { + hi2c->MspInitCallback = HAL_I2C_MspInit; /* Legacy weak MspInit */ + } + + /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ + hi2c->MspInitCallback(hi2c); +#else + /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ + HAL_I2C_MspInit(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /*---------------------------- I2Cx TIMINGR Configuration ------------------*/ + /* Configure I2Cx: Frequency range */ + hi2c->Instance->TIMINGR = hi2c->Init.Timing & TIMING_CLEAR_MASK; + + /*---------------------------- I2Cx OAR1 Configuration ---------------------*/ + /* Disable Own Address1 before set the Own Address1 configuration */ + hi2c->Instance->OAR1 &= ~I2C_OAR1_OA1EN; + + /* Configure I2Cx: Own Address1 and ack own address1 mode */ + if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_7BIT) + { + hi2c->Instance->OAR1 = (I2C_OAR1_OA1EN | hi2c->Init.OwnAddress1); + } + else /* I2C_ADDRESSINGMODE_10BIT */ + { + hi2c->Instance->OAR1 = (I2C_OAR1_OA1EN | I2C_OAR1_OA1MODE | hi2c->Init.OwnAddress1); + } + + /*---------------------------- I2Cx CR2 Configuration ----------------------*/ + /* Configure I2Cx: Addressing Master mode */ + if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) + { + SET_BIT(hi2c->Instance->CR2, I2C_CR2_ADD10); + } + else + { + /* Clear the I2C ADD10 bit */ + CLEAR_BIT(hi2c->Instance->CR2, I2C_CR2_ADD10); + } + /* Enable the AUTOEND by default, and enable NACK (should be disable only during Slave process */ + hi2c->Instance->CR2 |= (I2C_CR2_AUTOEND | I2C_CR2_NACK); + + /*---------------------------- I2Cx OAR2 Configuration ---------------------*/ + /* Disable Own Address2 before set the Own Address2 configuration */ + hi2c->Instance->OAR2 &= ~I2C_DUALADDRESS_ENABLE; + + /* Configure I2Cx: Dual mode and Own Address2 */ + hi2c->Instance->OAR2 = (hi2c->Init.DualAddressMode | hi2c->Init.OwnAddress2 | \ + (hi2c->Init.OwnAddress2Masks << 8)); + + /*---------------------------- I2Cx CR1 Configuration ----------------------*/ + /* Configure I2Cx: Generalcall and NoStretch mode */ + hi2c->Instance->CR1 = (hi2c->Init.GeneralCallMode | hi2c->Init.NoStretchMode); + + /* Enable the selected I2C peripheral */ + __HAL_I2C_ENABLE(hi2c); + + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->Mode = HAL_I2C_MODE_NONE; + + return HAL_OK; +} + +/** + * @brief DeInitialize the I2C peripheral. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_DeInit(I2C_HandleTypeDef *hi2c) +{ + /* Check the I2C handle allocation */ + if (hi2c == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the I2C Peripheral Clock */ + __HAL_I2C_DISABLE(hi2c); + +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + if (hi2c->MspDeInitCallback == NULL) + { + hi2c->MspDeInitCallback = HAL_I2C_MspDeInit; /* Legacy weak MspDeInit */ + } + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + hi2c->MspDeInitCallback(hi2c); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_I2C_MspDeInit(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + hi2c->State = HAL_I2C_STATE_RESET; + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Release Lock */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Initialize the I2C MSP. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitialize the I2C MSP. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MspDeInit(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MspDeInit could be implemented in the user file + */ +} + +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User I2C Callback + * To be used instead of the weak predefined callback + * @note The HAL_I2C_RegisterCallback() may be called before HAL_I2C_Init() in HAL_I2C_STATE_RESET + * to register callbacks for HAL_I2C_MSPINIT_CB_ID and HAL_I2C_MSPDEINIT_CB_ID. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_I2C_MASTER_TX_COMPLETE_CB_ID Master Tx Transfer completed callback ID + * @arg @ref HAL_I2C_MASTER_RX_COMPLETE_CB_ID Master Rx Transfer completed callback ID + * @arg @ref HAL_I2C_SLAVE_TX_COMPLETE_CB_ID Slave Tx Transfer completed callback ID + * @arg @ref HAL_I2C_SLAVE_RX_COMPLETE_CB_ID Slave Rx Transfer completed callback ID + * @arg @ref HAL_I2C_LISTEN_COMPLETE_CB_ID Listen Complete callback ID + * @arg @ref HAL_I2C_MEM_TX_COMPLETE_CB_ID Memory Tx Transfer callback ID + * @arg @ref HAL_I2C_MEM_RX_COMPLETE_CB_ID Memory Rx Transfer completed callback ID + * @arg @ref HAL_I2C_ERROR_CB_ID Error callback ID + * @arg @ref HAL_I2C_ABORT_CB_ID Abort callback ID + * @arg @ref HAL_I2C_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_I2C_MSPDEINIT_CB_ID MspDeInit callback ID + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_RegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID, + pI2C_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + if (HAL_I2C_STATE_READY == hi2c->State) + { + switch (CallbackID) + { + case HAL_I2C_MASTER_TX_COMPLETE_CB_ID : + hi2c->MasterTxCpltCallback = pCallback; + break; + + case HAL_I2C_MASTER_RX_COMPLETE_CB_ID : + hi2c->MasterRxCpltCallback = pCallback; + break; + + case HAL_I2C_SLAVE_TX_COMPLETE_CB_ID : + hi2c->SlaveTxCpltCallback = pCallback; + break; + + case HAL_I2C_SLAVE_RX_COMPLETE_CB_ID : + hi2c->SlaveRxCpltCallback = pCallback; + break; + + case HAL_I2C_LISTEN_COMPLETE_CB_ID : + hi2c->ListenCpltCallback = pCallback; + break; + + case HAL_I2C_MEM_TX_COMPLETE_CB_ID : + hi2c->MemTxCpltCallback = pCallback; + break; + + case HAL_I2C_MEM_RX_COMPLETE_CB_ID : + hi2c->MemRxCpltCallback = pCallback; + break; + + case HAL_I2C_ERROR_CB_ID : + hi2c->ErrorCallback = pCallback; + break; + + case HAL_I2C_ABORT_CB_ID : + hi2c->AbortCpltCallback = pCallback; + break; + + case HAL_I2C_MSPINIT_CB_ID : + hi2c->MspInitCallback = pCallback; + break; + + case HAL_I2C_MSPDEINIT_CB_ID : + hi2c->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_I2C_STATE_RESET == hi2c->State) + { + switch (CallbackID) + { + case HAL_I2C_MSPINIT_CB_ID : + hi2c->MspInitCallback = pCallback; + break; + + case HAL_I2C_MSPDEINIT_CB_ID : + hi2c->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Unregister an I2C Callback + * I2C callback is redirected to the weak predefined callback + * @note The HAL_I2C_UnRegisterCallback() may be called before HAL_I2C_Init() in HAL_I2C_STATE_RESET + * to un-register callbacks for HAL_I2C_MSPINIT_CB_ID and HAL_I2C_MSPDEINIT_CB_ID. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * This parameter can be one of the following values: + * @arg @ref HAL_I2C_MASTER_TX_COMPLETE_CB_ID Master Tx Transfer completed callback ID + * @arg @ref HAL_I2C_MASTER_RX_COMPLETE_CB_ID Master Rx Transfer completed callback ID + * @arg @ref HAL_I2C_SLAVE_TX_COMPLETE_CB_ID Slave Tx Transfer completed callback ID + * @arg @ref HAL_I2C_SLAVE_RX_COMPLETE_CB_ID Slave Rx Transfer completed callback ID + * @arg @ref HAL_I2C_LISTEN_COMPLETE_CB_ID Listen Complete callback ID + * @arg @ref HAL_I2C_MEM_TX_COMPLETE_CB_ID Memory Tx Transfer callback ID + * @arg @ref HAL_I2C_MEM_RX_COMPLETE_CB_ID Memory Rx Transfer completed callback ID + * @arg @ref HAL_I2C_ERROR_CB_ID Error callback ID + * @arg @ref HAL_I2C_ABORT_CB_ID Abort callback ID + * @arg @ref HAL_I2C_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_I2C_MSPDEINIT_CB_ID MspDeInit callback ID + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_UnRegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (HAL_I2C_STATE_READY == hi2c->State) + { + switch (CallbackID) + { + case HAL_I2C_MASTER_TX_COMPLETE_CB_ID : + hi2c->MasterTxCpltCallback = HAL_I2C_MasterTxCpltCallback; /* Legacy weak MasterTxCpltCallback */ + break; + + case HAL_I2C_MASTER_RX_COMPLETE_CB_ID : + hi2c->MasterRxCpltCallback = HAL_I2C_MasterRxCpltCallback; /* Legacy weak MasterRxCpltCallback */ + break; + + case HAL_I2C_SLAVE_TX_COMPLETE_CB_ID : + hi2c->SlaveTxCpltCallback = HAL_I2C_SlaveTxCpltCallback; /* Legacy weak SlaveTxCpltCallback */ + break; + + case HAL_I2C_SLAVE_RX_COMPLETE_CB_ID : + hi2c->SlaveRxCpltCallback = HAL_I2C_SlaveRxCpltCallback; /* Legacy weak SlaveRxCpltCallback */ + break; + + case HAL_I2C_LISTEN_COMPLETE_CB_ID : + hi2c->ListenCpltCallback = HAL_I2C_ListenCpltCallback; /* Legacy weak ListenCpltCallback */ + break; + + case HAL_I2C_MEM_TX_COMPLETE_CB_ID : + hi2c->MemTxCpltCallback = HAL_I2C_MemTxCpltCallback; /* Legacy weak MemTxCpltCallback */ + break; + + case HAL_I2C_MEM_RX_COMPLETE_CB_ID : + hi2c->MemRxCpltCallback = HAL_I2C_MemRxCpltCallback; /* Legacy weak MemRxCpltCallback */ + break; + + case HAL_I2C_ERROR_CB_ID : + hi2c->ErrorCallback = HAL_I2C_ErrorCallback; /* Legacy weak ErrorCallback */ + break; + + case HAL_I2C_ABORT_CB_ID : + hi2c->AbortCpltCallback = HAL_I2C_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + break; + + case HAL_I2C_MSPINIT_CB_ID : + hi2c->MspInitCallback = HAL_I2C_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_I2C_MSPDEINIT_CB_ID : + hi2c->MspDeInitCallback = HAL_I2C_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_I2C_STATE_RESET == hi2c->State) + { + switch (CallbackID) + { + case HAL_I2C_MSPINIT_CB_ID : + hi2c->MspInitCallback = HAL_I2C_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_I2C_MSPDEINIT_CB_ID : + hi2c->MspDeInitCallback = HAL_I2C_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Register the Slave Address Match I2C Callback + * To be used instead of the weak HAL_I2C_AddrCallback() predefined callback + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pCallback pointer to the Address Match Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_RegisterAddrCallback(I2C_HandleTypeDef *hi2c, pI2C_AddrCallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + if (HAL_I2C_STATE_READY == hi2c->State) + { + hi2c->AddrCallback = pCallback; + } + else + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief UnRegister the Slave Address Match I2C Callback + * Info Ready I2C Callback is redirected to the weak HAL_I2C_AddrCallback() predefined callback + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_UnRegisterAddrCallback(I2C_HandleTypeDef *hi2c) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (HAL_I2C_STATE_READY == hi2c->State) + { + hi2c->AddrCallback = HAL_I2C_AddrCallback; /* Legacy weak AddrCallback */ + } + else + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup I2C_Exported_Functions_Group2 Input and Output operation functions + * @brief Data transfers functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the I2C data + transfers. + + (#) There are two modes of transfer: + (++) Blocking mode : The communication is performed in the polling mode. + The status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode : The communication is performed using Interrupts + or DMA. These functions return the status of the transfer startup. + The end of the data processing will be indicated through the + dedicated I2C IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + + (#) Blocking mode functions are : + (++) HAL_I2C_Master_Transmit() + (++) HAL_I2C_Master_Receive() + (++) HAL_I2C_Slave_Transmit() + (++) HAL_I2C_Slave_Receive() + (++) HAL_I2C_Mem_Write() + (++) HAL_I2C_Mem_Read() + (++) HAL_I2C_IsDeviceReady() + + (#) No-Blocking mode functions with Interrupt are : + (++) HAL_I2C_Master_Transmit_IT() + (++) HAL_I2C_Master_Receive_IT() + (++) HAL_I2C_Slave_Transmit_IT() + (++) HAL_I2C_Slave_Receive_IT() + (++) HAL_I2C_Mem_Write_IT() + (++) HAL_I2C_Mem_Read_IT() + (++) HAL_I2C_Master_Seq_Transmit_IT() + (++) HAL_I2C_Master_Seq_Receive_IT() + (++) HAL_I2C_Slave_Seq_Transmit_IT() + (++) HAL_I2C_Slave_Seq_Receive_IT() + (++) HAL_I2C_EnableListen_IT() + (++) HAL_I2C_DisableListen_IT() + (++) HAL_I2C_Master_Abort_IT() + + (#) No-Blocking mode functions with DMA are : + (++) HAL_I2C_Master_Transmit_DMA() + (++) HAL_I2C_Master_Receive_DMA() + (++) HAL_I2C_Slave_Transmit_DMA() + (++) HAL_I2C_Slave_Receive_DMA() + (++) HAL_I2C_Mem_Write_DMA() + (++) HAL_I2C_Mem_Read_DMA() + (++) HAL_I2C_Master_Seq_Transmit_DMA() + (++) HAL_I2C_Master_Seq_Receive_DMA() + (++) HAL_I2C_Slave_Seq_Transmit_DMA() + (++) HAL_I2C_Slave_Seq_Receive_DMA() + + (#) A set of Transfer Complete Callbacks are provided in non Blocking mode: + (++) HAL_I2C_MasterTxCpltCallback() + (++) HAL_I2C_MasterRxCpltCallback() + (++) HAL_I2C_SlaveTxCpltCallback() + (++) HAL_I2C_SlaveRxCpltCallback() + (++) HAL_I2C_MemTxCpltCallback() + (++) HAL_I2C_MemRxCpltCallback() + (++) HAL_I2C_AddrCallback() + (++) HAL_I2C_ListenCpltCallback() + (++) HAL_I2C_ErrorCallback() + (++) HAL_I2C_AbortCpltCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Transmits in master mode an amount of data in blocking mode. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart; + uint32_t xfermode; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + if (hi2c->XferSize > 0U) + { + /* Preload TX register */ + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)(hi2c->XferSize + 1U), xfermode, + I2C_GENERATE_START_WRITE); + } + else + { + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, + I2C_GENERATE_START_WRITE); + } + + while (hi2c->XferCount > 0U) + { + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + /* Wait until TCR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, + I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_NO_STARTSTOP); + } + } + } + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is set */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives in master mode an amount of data in blocking mode. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, + I2C_GENERATE_START_READ); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_GENERATE_START_READ); + } + + while (hi2c->XferCount > 0U) + { + /* Wait until RXNE flag is set */ + if (I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + /* Wait until TCR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, + I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_NO_STARTSTOP); + } + } + } + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is set */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmits in slave mode an amount of data in blocking mode. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, + uint32_t Timeout) +{ + uint32_t tickstart; + uint16_t tmpXferCount; + HAL_StatusTypeDef error; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Preload TX data if no stretch enable */ + if (hi2c->Init.NoStretchMode == I2C_NOSTRETCH_ENABLE) + { + /* Preload TX register */ + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + } + + /* Wait until ADDR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + return HAL_ERROR; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + + /* If 10bit addressing mode is selected */ + if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) + { + /* Wait until ADDR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + return HAL_ERROR; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + } + + /* Wait until DIR flag is set Transmitter mode */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_DIR, RESET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + return HAL_ERROR; + } + + while (hi2c->XferCount > 0U) + { + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + } + + /* Wait until AF flag is set */ + error = I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_AF, RESET, Timeout, tickstart); + + if (error != HAL_OK) + { + /* Check that I2C transfer finished */ + /* if yes, normal use case, a NACK is sent by the MASTER when Transfer is finished */ + /* Mean XferCount == 0 */ + + tmpXferCount = hi2c->XferCount; + if ((hi2c->ErrorCode == HAL_I2C_ERROR_AF) && (tmpXferCount == 0U)) + { + /* Reset ErrorCode to NONE */ + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + } + else + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + } + else + { + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Clear AF flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Wait until STOP flag is set */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + return HAL_ERROR; + } + + /* Clear STOP flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + } + + /* Wait until BUSY flag is reset */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in blocking mode + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, + uint32_t Timeout) +{ + uint32_t tickstart; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferISR = NULL; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Wait until ADDR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + + /* Wait until DIR flag is reset Receiver mode */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_DIR, SET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + while (hi2c->XferCount > 0U) + { + /* Wait until RXNE flag is set */ + if (I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Store Last receive data if any */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET) + { + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + } + + return HAL_ERROR; + } + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + } + + /* Wait until STOP flag is set */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Clear STOP flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Wait until BUSY flag is reset */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in master mode an amount of data in non-blocking mode with Interrupt + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size) +{ + uint32_t xfermode; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_IT; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE */ + if (hi2c->XferSize > 0U) + { + /* Preload TX register */ + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)(hi2c->XferSize + 1U), xfermode, + I2C_GENERATE_START_WRITE); + } + else + { + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, + I2C_GENERATE_START_WRITE); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in master mode an amount of data in non-blocking mode with Interrupt + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size) +{ + uint32_t xfermode; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_IT; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_READ); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in slave mode an amount of data in non-blocking mode with Interrupt + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Slave_ISR_IT; + + /* Preload TX data if no stretch enable */ + if (hi2c->Init.NoStretchMode == I2C_NOSTRETCH_ENABLE) + { + /* Preload TX register */ + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in non-blocking mode with Interrupt + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Slave_ISR_IT; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Transmit in master mode an amount of data in non-blocking mode with DMA + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size) +{ + uint32_t xfermode; + HAL_StatusTypeDef dmaxferstatus; + uint32_t sizetoxfer = 0U; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_DMA; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + if (hi2c->XferSize > 0U) + { + /* Preload TX register */ + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + sizetoxfer = hi2c->XferSize; + hi2c->XferCount--; + hi2c->XferSize--; + } + + if (hi2c->XferSize > 0U) + { + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMAMasterTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, + (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)(hi2c->XferSize + 1U), + xfermode, I2C_GENERATE_START_WRITE); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + else + { + /* Update Transfer ISR function pointer */ + hi2c->XferISR = I2C_Master_ISR_IT; + + /* Send Slave Address */ + /* Set NBYTES to write and generate START condition */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)sizetoxfer, I2C_AUTOEND_MODE, + I2C_GENERATE_START_WRITE); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in master mode an amount of data in non-blocking mode with DMA + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size) +{ + uint32_t xfermode; + HAL_StatusTypeDef dmaxferstatus; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_DMA; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + if (hi2c->XferSize > 0U) + { + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMAMasterReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, + hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address */ + /* Set NBYTES to read and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_READ); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + else + { + /* Update Transfer ISR function pointer */ + hi2c->XferISR = I2C_Master_ISR_IT; + + /* Send Slave Address */ + /* Set NBYTES to read and generate START condition */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_GENERATE_START_READ); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in slave mode an amount of data in non-blocking mode with DMA + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef dmaxferstatus; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Slave_ISR_DMA; + + /* Preload TX data if no stretch enable */ + if (hi2c->Init.NoStretchMode == I2C_NOSTRETCH_ENABLE) + { + /* Preload TX register */ + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + } + + if (hi2c->XferCount != 0U) + { + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMASlaveTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, + (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->TXDR, + hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, STOP, NACK, ADDR interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + else + { + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, STOP, NACK, ADDR interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in non-blocking mode with DMA + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef dmaxferstatus; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Slave_ISR_DMA; + + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMASlaveReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, + hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, STOP, NACK, ADDR interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Write an amount of data in blocking mode to a specific memory address + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, + uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Send Slave Address and Memory Address */ + if (I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, Timeout, tickstart) != HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + + do + { + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + /* Wait until TCR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, + I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_NO_STARTSTOP); + } + } + + } while (hi2c->XferCount > 0U); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Read an amount of data in blocking mode from a specific memory address + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, + uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Send Slave Address and Memory Address */ + if (I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, Timeout, tickstart) != HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, + I2C_GENERATE_START_READ); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_GENERATE_START_READ); + } + + do + { + /* Wait until RXNE flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_RXNE, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + /* Wait until TCR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t) hi2c->XferSize, I2C_RELOAD_MODE, + I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_NO_STARTSTOP); + } + } + } while (hi2c->XferCount > 0U); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @brief Write an amount of data in non-blocking mode with Interrupt to a specific memory address + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, + uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->XferSize = 0U; + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Mem_ISR_IT; + hi2c->Devaddress = DevAddress; + + /* If Memory address size is 8Bit */ + if (MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Prefetch Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + + /* Reset Memaddress content */ + hi2c->Memaddress = 0xFFFFFFFFU; + } + /* If Memory address size is 16Bit */ + else + { + /* Prefetch Memory Address (MSB part, LSB will be manage through interrupt) */ + hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); + + /* Prepare Memaddress buffer for LSB part */ + hi2c->Memaddress = I2C_MEM_ADD_LSB(MemAddress); + } + /* Send Slave Address and Memory Address */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)MemAddSize, I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Read an amount of data in non-blocking mode with Interrupt from a specific memory address + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, + uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Mem_ISR_IT; + hi2c->Devaddress = DevAddress; + + /* If Memory address size is 8Bit */ + if (MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Prefetch Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + + /* Reset Memaddress content */ + hi2c->Memaddress = 0xFFFFFFFFU; + } + /* If Memory address size is 16Bit */ + else + { + /* Prefetch Memory Address (MSB part, LSB will be manage through interrupt) */ + hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); + + /* Prepare Memaddress buffer for LSB part */ + hi2c->Memaddress = I2C_MEM_ADD_LSB(MemAddress); + } + /* Send Slave Address and Memory Address */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)MemAddSize, I2C_SOFTEND_MODE, I2C_GENERATE_START_WRITE); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Write an amount of data in non-blocking mode with DMA to a specific memory address + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, + uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Mem_ISR_DMA; + hi2c->Devaddress = DevAddress; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + } + + /* If Memory address size is 8Bit */ + if (MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Prefetch Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + + /* Reset Memaddress content */ + hi2c->Memaddress = 0xFFFFFFFFU; + } + /* If Memory address size is 16Bit */ + else + { + /* Prefetch Memory Address (MSB part, LSB will be manage through interrupt) */ + hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); + + /* Prepare Memaddress buffer for LSB part */ + hi2c->Memaddress = I2C_MEM_ADD_LSB(MemAddress); + } + + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMAMasterTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, + hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address and Memory Address */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)MemAddSize, I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Reads an amount of data in non-blocking mode with DMA from a specific memory address. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be read + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, + uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Mem_ISR_DMA; + hi2c->Devaddress = DevAddress; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + } + + /* If Memory address size is 8Bit */ + if (MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Prefetch Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + + /* Reset Memaddress content */ + hi2c->Memaddress = 0xFFFFFFFFU; + } + /* If Memory address size is 16Bit */ + else + { + /* Prefetch Memory Address (MSB part, LSB will be manage through interrupt) */ + hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); + + /* Prepare Memaddress buffer for LSB part */ + hi2c->Memaddress = I2C_MEM_ADD_LSB(MemAddress); + } + + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMAMasterReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, + hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address and Memory Address */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)MemAddSize, I2C_SOFTEND_MODE, I2C_GENERATE_START_WRITE); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Checks if target device is ready for communication. + * @note This function is used with Memory devices + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param Trials Number of trials + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, + uint32_t Timeout) +{ + uint32_t tickstart; + + __IO uint32_t I2C_Trials = 0UL; + + HAL_StatusTypeDef status = HAL_OK; + + FlagStatus tmp1; + FlagStatus tmp2; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + do + { + /* Generate Start */ + hi2c->Instance->CR2 = I2C_GENERATE_START(hi2c->Init.AddressingMode, DevAddress); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is set or a NACK flag is set*/ + tickstart = HAL_GetTick(); + + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF); + tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF); + + while ((tmp1 == RESET) && (tmp2 == RESET)) + { + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF); + tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF); + } + + /* Check if the NACKF flag has not been set */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == RESET) + { + /* Wait until STOPF flag is reset */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK) + { + /* A non acknowledge appear during STOP Flag waiting process, a new trial must be performed */ + if (hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Reset the error code for next trial */ + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + } + else + { + status = HAL_ERROR; + } + } + else + { + /* A acknowledge appear during STOP Flag waiting process, this mean that device respond to its address */ + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Device is ready */ + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + } + else + { + /* A non acknowledge is detected, this mean that device not respond to its address, + a new trial must be performed */ + + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Wait until STOPF flag is reset */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK) + { + status = HAL_ERROR; + } + else + { + /* Clear STOP Flag, auto generated with autoend*/ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + } + } + + /* Increment Trials */ + I2C_Trials++; + + if ((I2C_Trials < Trials) && (status == HAL_ERROR)) + { + status = HAL_OK; + } + + } while (I2C_Trials < Trials); + + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Sequential transmit in master I2C mode an amount of data in non-blocking mode with Interrupt. + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size, uint32_t XferOptions) +{ + uint32_t xfermode; + uint32_t xferrequest = I2C_GENERATE_START_WRITE; + uint32_t sizetoxfer = 0U; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Master_ISR_IT; + + /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = hi2c->XferOptions; + } + + if ((hi2c->XferSize > 0U) && ((XferOptions == I2C_FIRST_FRAME) || \ + (XferOptions == I2C_FIRST_AND_LAST_FRAME))) + { + /* Preload TX register */ + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + sizetoxfer = hi2c->XferSize; + hi2c->XferCount--; + hi2c->XferSize--; + } + + /* If transfer direction not change and there is no request to start another frame, + do not generate Restart Condition */ + /* Mean Previous state is same as current state */ + if ((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_TX) && \ + (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0)) + { + xferrequest = I2C_NO_STARTSTOP; + } + else + { + /* Convert OTHER_xxx XferOptions if any */ + I2C_ConvertOtherXferOptions(hi2c); + + /* Update xfermode accordingly if no reload is necessary */ + if (hi2c->XferCount <= MAX_NBYTE_SIZE) + { + xfermode = hi2c->XferOptions; + } + } + + /* Send Slave Address and set NBYTES to write */ + if ((XferOptions == I2C_FIRST_FRAME) || (XferOptions == I2C_FIRST_AND_LAST_FRAME)) + { + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)sizetoxfer, xfermode, xferrequest); + } + else + { + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Sequential transmit in master I2C mode an amount of data in non-blocking mode with DMA. + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size, uint32_t XferOptions) +{ + uint32_t xfermode; + uint32_t xferrequest = I2C_GENERATE_START_WRITE; + HAL_StatusTypeDef dmaxferstatus; + uint32_t sizetoxfer = 0U; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Master_ISR_DMA; + + /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = hi2c->XferOptions; + } + + if ((hi2c->XferSize > 0U) && ((XferOptions == I2C_FIRST_FRAME) || \ + (XferOptions == I2C_FIRST_AND_LAST_FRAME))) + { + /* Preload TX register */ + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + sizetoxfer = hi2c->XferSize; + hi2c->XferCount--; + hi2c->XferSize--; + } + + /* If transfer direction not change and there is no request to start another frame, + do not generate Restart Condition */ + /* Mean Previous state is same as current state */ + if ((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_TX) && \ + (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0)) + { + xferrequest = I2C_NO_STARTSTOP; + } + else + { + /* Convert OTHER_xxx XferOptions if any */ + I2C_ConvertOtherXferOptions(hi2c); + + /* Update xfermode accordingly if no reload is necessary */ + if (hi2c->XferCount <= MAX_NBYTE_SIZE) + { + xfermode = hi2c->XferOptions; + } + } + + if (hi2c->XferSize > 0U) + { + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMAMasterTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, + (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address and set NBYTES to write */ + if ((XferOptions == I2C_FIRST_FRAME) || (XferOptions == I2C_FIRST_AND_LAST_FRAME)) + { + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)sizetoxfer, xfermode, xferrequest); + } + else + { + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); + } + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + else + { + /* Update Transfer ISR function pointer */ + hi2c->XferISR = I2C_Master_ISR_IT; + + /* Send Slave Address */ + /* Set NBYTES to write and generate START condition */ + if ((XferOptions == I2C_FIRST_FRAME) || (XferOptions == I2C_FIRST_AND_LAST_FRAME)) + { + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)sizetoxfer, xfermode, xferrequest); + } + else + { + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Sequential receive in master I2C mode an amount of data in non-blocking mode with Interrupt + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size, uint32_t XferOptions) +{ + uint32_t xfermode; + uint32_t xferrequest = I2C_GENERATE_START_READ; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Master_ISR_IT; + + /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = hi2c->XferOptions; + } + + /* If transfer direction not change and there is no request to start another frame, + do not generate Restart Condition */ + /* Mean Previous state is same as current state */ + if ((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_RX) && \ + (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0)) + { + xferrequest = I2C_NO_STARTSTOP; + } + else + { + /* Convert OTHER_xxx XferOptions if any */ + I2C_ConvertOtherXferOptions(hi2c); + + /* Update xfermode accordingly if no reload is necessary */ + if (hi2c->XferCount <= MAX_NBYTE_SIZE) + { + xfermode = hi2c->XferOptions; + } + } + + /* Send Slave Address and set NBYTES to read */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Sequential receive in master I2C mode an amount of data in non-blocking mode with DMA + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size, uint32_t XferOptions) +{ + uint32_t xfermode; + uint32_t xferrequest = I2C_GENERATE_START_READ; + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Master_ISR_DMA; + + /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = hi2c->XferOptions; + } + + /* If transfer direction not change and there is no request to start another frame, + do not generate Restart Condition */ + /* Mean Previous state is same as current state */ + if ((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_RX) && \ + (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0)) + { + xferrequest = I2C_NO_STARTSTOP; + } + else + { + /* Convert OTHER_xxx XferOptions if any */ + I2C_ConvertOtherXferOptions(hi2c); + + /* Update xfermode accordingly if no reload is necessary */ + if (hi2c->XferCount <= MAX_NBYTE_SIZE) + { + xfermode = hi2c->XferOptions; + } + } + + if (hi2c->XferSize > 0U) + { + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMAMasterReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, + hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address and set NBYTES to read */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + else + { + /* Update Transfer ISR function pointer */ + hi2c->XferISR = I2C_Master_ISR_IT; + + /* Send Slave Address */ + /* Set NBYTES to read and generate START condition */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_GENERATE_START_READ); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Sequential transmit in slave/device I2C mode an amount of data in non-blocking mode with Interrupt + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, + uint32_t XferOptions) +{ + /* Declaration of tmp to prevent undefined behavior of volatile usage */ + FlagStatus tmp; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT); + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */ + /* and then toggle the HAL slave RX state to TX state */ + if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) + { + /* Disable associated Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Abort DMA Xfer if any */ + if ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + } + + hi2c->State = HAL_I2C_STATE_BUSY_TX_LISTEN; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Slave_ISR_IT; + + tmp = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR); + if ((I2C_GET_DIR(hi2c) == I2C_DIRECTION_RECEIVE) && (tmp != RESET)) + { + /* Clear ADDR flag after prepare the transfer parameters */ + /* This action will generate an acknowledge to the Master */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* REnable ADDR interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Sequential transmit in slave/device I2C mode an amount of data in non-blocking mode with DMA + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, + uint32_t XferOptions) +{ + /* Declaration of tmp to prevent undefined behavior of volatile usage */ + FlagStatus tmp; + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT); + + /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */ + /* and then toggle the HAL slave RX state to TX state */ + if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) + { + /* Disable associated Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + + if ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) + { + /* Abort DMA Xfer if any */ + if (hi2c->hdmarx != NULL) + { + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); + } + } + } + } + else if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) + { + if ((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* Abort DMA Xfer if any */ + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); + } + } + } + } + else + { + /* Nothing to do */ + } + + hi2c->State = HAL_I2C_STATE_BUSY_TX_LISTEN; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Slave_ISR_DMA; + + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMASlaveTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, + hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Reset XferSize */ + hi2c->XferSize = 0; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + tmp = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR); + if ((I2C_GET_DIR(hi2c) == I2C_DIRECTION_RECEIVE) && (tmp != RESET)) + { + /* Clear ADDR flag after prepare the transfer parameters */ + /* This action will generate an acknowledge to the Master */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, STOP, NACK, ADDR interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Sequential receive in slave/device I2C mode an amount of data in non-blocking mode with Interrupt + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, + uint32_t XferOptions) +{ + /* Declaration of tmp to prevent undefined behavior of volatile usage */ + FlagStatus tmp; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT); + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */ + /* and then toggle the HAL slave TX state to RX state */ + if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) + { + /* Disable associated Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + +#if defined(HAL_DMA_MODULE_ENABLED) + if ((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* Abort DMA Xfer if any */ + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + } + + hi2c->State = HAL_I2C_STATE_BUSY_RX_LISTEN; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Slave_ISR_IT; + + tmp = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR); + if ((I2C_GET_DIR(hi2c) == I2C_DIRECTION_TRANSMIT) && (tmp != RESET)) + { + /* Clear ADDR flag after prepare the transfer parameters */ + /* This action will generate an acknowledge to the Master */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* REnable ADDR interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Sequential receive in slave/device I2C mode an amount of data in non-blocking mode with DMA + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, + uint32_t XferOptions) +{ + /* Declaration of tmp to prevent undefined behavior of volatile usage */ + FlagStatus tmp; + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT); + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */ + /* and then toggle the HAL slave TX state to RX state */ + if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) + { + /* Disable associated Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + if ((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) + { + /* Abort DMA Xfer if any */ + if (hi2c->hdmatx != NULL) + { + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); + } + } + } + } + else if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) + { + if ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + /* Abort DMA Xfer if any */ + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); + } + } + } + } + else + { + /* Nothing to do */ + } + + hi2c->State = HAL_I2C_STATE_BUSY_RX_LISTEN; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Slave_ISR_DMA; + + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMASlaveReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, + (uint32_t)pData, hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Reset XferSize */ + hi2c->XferSize = 0; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + tmp = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR); + if ((I2C_GET_DIR(hi2c) == I2C_DIRECTION_TRANSMIT) && (tmp != RESET)) + { + /* Clear ADDR flag after prepare the transfer parameters */ + /* This action will generate an acknowledge to the Master */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* REnable ADDR interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Enable the Address listen mode with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_EnableListen_IT(I2C_HandleTypeDef *hi2c) +{ + if (hi2c->State == HAL_I2C_STATE_READY) + { + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->XferISR = I2C_Slave_ISR_IT; + + /* Enable the Address Match interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Disable the Address listen mode with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c) +{ + /* Declaration of tmp to prevent undefined behavior of volatile usage */ + uint32_t tmp; + + /* Disable Address listen mode only if a transfer is not ongoing */ + if (hi2c->State == HAL_I2C_STATE_LISTEN) + { + tmp = (uint32_t)(hi2c->State) & I2C_STATE_MSK; + hi2c->PreviousState = tmp | (uint32_t)(hi2c->Mode); + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + hi2c->XferISR = NULL; + + /* Disable the Address Match interrupt */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Abort a master or memory I2C IT or DMA process communication with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Abort_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress) +{ + HAL_I2C_ModeTypeDef tmp_mode = hi2c->Mode; + + if ((tmp_mode == HAL_I2C_MODE_MASTER) || (tmp_mode == HAL_I2C_MODE_MEM)) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Interrupts and Store Previous state */ + if (hi2c->State == HAL_I2C_STATE_BUSY_TX) + { + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + hi2c->PreviousState = I2C_STATE_MASTER_BUSY_TX; + } + else if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + hi2c->PreviousState = I2C_STATE_MASTER_BUSY_RX; + } + else + { + /* Do nothing */ + } + + /* Set State at HAL_I2C_STATE_ABORT */ + hi2c->State = HAL_I2C_STATE_ABORT; + + /* Set NBYTES to 1 to generate a dummy read on I2C peripheral */ + /* Set AUTOEND mode, this will generate a NACK then STOP condition to abort the current transfer */ + I2C_TransferConfig(hi2c, DevAddress, 1, I2C_AUTOEND_MODE, I2C_GENERATE_STOP); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + + return HAL_OK; + } + else + { + /* Wrong usage of abort function */ + /* This function should be used only in case of abort monitored by master device */ + return HAL_ERROR; + } +} + +/** + * @} + */ + +/** @defgroup I2C_IRQ_Handler_and_Callbacks IRQ Handler and Callbacks + * @{ + */ + +/** + * @brief This function handles I2C event interrupt request. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c) /* Derogation MISRAC2012-Rule-8.13 */ +{ + /* Get current IT Flags and IT sources value */ + uint32_t itflags = READ_REG(hi2c->Instance->ISR); + uint32_t itsources = READ_REG(hi2c->Instance->CR1); + + /* I2C events treatment -------------------------------------*/ + if (hi2c->XferISR != NULL) + { + hi2c->XferISR(hi2c, itflags, itsources); + } +} + +/** + * @brief This function handles I2C error interrupt request. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +void HAL_I2C_ER_IRQHandler(I2C_HandleTypeDef *hi2c) +{ + uint32_t itflags = READ_REG(hi2c->Instance->ISR); + uint32_t itsources = READ_REG(hi2c->Instance->CR1); + uint32_t tmperror; + + /* I2C Bus error interrupt occurred ------------------------------------*/ + if ((I2C_CHECK_FLAG(itflags, I2C_FLAG_BERR) != RESET) && \ + (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_ERRI) != RESET)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_BERR; + + /* Clear BERR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR); + } + + /* I2C Over-Run/Under-Run interrupt occurred ----------------------------------------*/ + if ((I2C_CHECK_FLAG(itflags, I2C_FLAG_OVR) != RESET) && \ + (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_ERRI) != RESET)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_OVR; + + /* Clear OVR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR); + } + + /* I2C Arbitration Loss error interrupt occurred -------------------------------------*/ + if ((I2C_CHECK_FLAG(itflags, I2C_FLAG_ARLO) != RESET) && \ + (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_ERRI) != RESET)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_ARLO; + + /* Clear ARLO flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO); + } + + /* Store current volatile hi2c->ErrorCode, misra rule */ + tmperror = hi2c->ErrorCode; + + /* Call the Error Callback in case of Error detected */ + if ((tmperror & (HAL_I2C_ERROR_BERR | HAL_I2C_ERROR_OVR | HAL_I2C_ERROR_ARLO)) != HAL_I2C_ERROR_NONE) + { + I2C_ITError(hi2c, tmperror); + } +} + +/** + * @brief Master Tx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MasterTxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Master Rx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MasterRxCpltCallback could be implemented in the user file + */ +} + +/** @brief Slave Tx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_SlaveTxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Slave Rx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_SlaveRxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Slave Address Match callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param TransferDirection Master request Transfer Direction (Write/Read), value of @ref I2C_XFERDIRECTION + * @param AddrMatchCode Address Match Code + * @retval None + */ +__weak void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + UNUSED(TransferDirection); + UNUSED(AddrMatchCode); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_AddrCallback() could be implemented in the user file + */ +} + +/** + * @brief Listen Complete callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_ListenCpltCallback() could be implemented in the user file + */ +} + +/** + * @brief Memory Tx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MemTxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Memory Rx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MemRxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief I2C error callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_ErrorCallback could be implemented in the user file + */ +} + +/** + * @brief I2C abort callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_AbortCpltCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup I2C_Exported_Functions_Group3 Peripheral State, Mode and Error functions + * @brief Peripheral State, Mode and Error functions + * +@verbatim + =============================================================================== + ##### Peripheral State, Mode and Error functions ##### + =============================================================================== + [..] + This subsection permit to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the I2C handle state. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL state + */ +HAL_I2C_StateTypeDef HAL_I2C_GetState(const I2C_HandleTypeDef *hi2c) +{ + /* Return I2C handle state */ + return hi2c->State; +} + +/** + * @brief Returns the I2C Master, Slave, Memory or no mode. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL mode + */ +HAL_I2C_ModeTypeDef HAL_I2C_GetMode(const I2C_HandleTypeDef *hi2c) +{ + return hi2c->Mode; +} + +/** + * @brief Return the I2C error code. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval I2C Error Code + */ +uint32_t HAL_I2C_GetError(const I2C_HandleTypeDef *hi2c) +{ + return hi2c->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup I2C_Private_Functions + * @{ + */ + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Master Mode with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags Interrupt flags to handle. + * @param ITSources Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Master_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources) +{ + uint16_t devaddress; + uint32_t tmpITFlags = ITFlags; + + /* Process Locked */ + __HAL_LOCK(hi2c); + + if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set corresponding Error Code */ + /* No need to generate STOP, it is automatically done */ + /* Error callback will be send during stop flag treatment */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_RXNE) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_RXI) != RESET)) + { + /* Remove RXNE flag on temporary variable as read done */ + tmpITFlags &= ~I2C_FLAG_RXNE; + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TC) == RESET) && \ + ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TXIS) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TXI) != RESET))) + { + /* Write data to TXDR */ + if (hi2c->XferCount != 0U) + { + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + } + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TCR) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + devaddress = (uint16_t)(hi2c->Instance->CR2 & I2C_CR2_SADD); + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + if (hi2c->XferOptions != I2C_NO_OPTION_FRAME) + { + I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, + hi2c->XferOptions, I2C_NO_STARTSTOP); + } + else + { + I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, + I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + } + } + else + { + /* Call TxCpltCallback() if no stop mode is set */ + if (I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE) + { + /* Call I2C Master Sequential complete process */ + I2C_ITMasterSeqCplt(hi2c); + } + else + { + /* Wrong size Status regarding TCR flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TC) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + if (hi2c->XferCount == 0U) + { + if (I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE) + { + /* Generate a stop condition in case of no transfer option */ + if (hi2c->XferOptions == I2C_NO_OPTION_FRAME) + { + /* Generate Stop */ + hi2c->Instance->CR2 |= I2C_CR2_STOP; + } + else + { + /* Call I2C Master Sequential complete process */ + I2C_ITMasterSeqCplt(hi2c); + } + } + } + else + { + /* Wrong size Status regarding TC flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + else + { + /* Nothing to do */ + } + + if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_STOPF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) + { + /* Call I2C Master complete process */ + I2C_ITMasterCplt(hi2c, tmpITFlags); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Memory Mode with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags Interrupt flags to handle. + * @param ITSources Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Mem_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources) +{ + uint32_t direction = I2C_GENERATE_START_WRITE; + uint32_t tmpITFlags = ITFlags; + + /* Process Locked */ + __HAL_LOCK(hi2c); + + if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set corresponding Error Code */ + /* No need to generate STOP, it is automatically done */ + /* Error callback will be send during stop flag treatment */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_RXNE) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_RXI) != RESET)) + { + /* Remove RXNE flag on temporary variable as read done */ + tmpITFlags &= ~I2C_FLAG_RXNE; + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TXIS) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TXI) != RESET)) + { + if (hi2c->Memaddress == 0xFFFFFFFFU) + { + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + } + else + { + /* Write LSB part of Memory Address */ + hi2c->Instance->TXDR = hi2c->Memaddress; + + /* Reset Memaddress content */ + hi2c->Memaddress = 0xFFFFFFFFU; + } + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TCR) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize, + I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize, + I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + } + else + { + /* Wrong size Status regarding TCR flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TC) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + /* Disable Interrupt related to address step */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + /* Enable ERR, TC, STOP, NACK and RXI interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); + + if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + direction = I2C_GENERATE_START_READ; + } + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize, + I2C_RELOAD_MODE, direction); + } + else + { + hi2c->XferSize = hi2c->XferCount; + + /* Set NBYTES to write and generate RESTART */ + I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize, + I2C_AUTOEND_MODE, direction); + } + } + else + { + /* Nothing to do */ + } + + if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_STOPF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) + { + /* Call I2C Master complete process */ + I2C_ITMasterCplt(hi2c, tmpITFlags); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Slave Mode with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags Interrupt flags to handle. + * @param ITSources Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Slave_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources) +{ + uint32_t tmpoptions = hi2c->XferOptions; + uint32_t tmpITFlags = ITFlags; + + /* Process locked */ + __HAL_LOCK(hi2c); + + /* Check if STOPF is set */ + if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_STOPF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) + { + /* Call I2C Slave complete process */ + I2C_ITSlaveCplt(hi2c, tmpITFlags); + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) + { + /* Check that I2C transfer finished */ + /* if yes, normal use case, a NACK is sent by the MASTER when Transfer is finished */ + /* Mean XferCount == 0*/ + /* So clear Flag NACKF only */ + if (hi2c->XferCount == 0U) + { + if ((hi2c->State == HAL_I2C_STATE_LISTEN) && (tmpoptions == I2C_FIRST_AND_LAST_FRAME)) + /* Same action must be done for (tmpoptions == I2C_LAST_FRAME) which removed for + Warning[Pa134]: left and right operands are identical */ + { + /* Call I2C Listen complete process */ + I2C_ITListenCplt(hi2c, tmpITFlags); + } + else if ((hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) && (tmpoptions != I2C_NO_OPTION_FRAME)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Last Byte is Transmitted */ + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + else + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + } + } + else + { + /* if no, error use case, a Non-Acknowledge of last Data is generated by the MASTER*/ + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + if ((tmpoptions == I2C_FIRST_FRAME) || (tmpoptions == I2C_NEXT_FRAME)) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, hi2c->ErrorCode); + } + } + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_RXNE) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_RXI) != RESET)) + { + if (hi2c->XferCount > 0U) + { + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + } + + if ((hi2c->XferCount == 0U) && \ + (tmpoptions != I2C_NO_OPTION_FRAME)) + { + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_ADDR) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_ADDRI) != RESET)) + { + I2C_ITAddrCplt(hi2c, tmpITFlags); + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TXIS) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TXI) != RESET)) + { + /* Write data to TXDR only if XferCount not reach "0" */ + /* A TXIS flag can be set, during STOP treatment */ + /* Check if all Data have already been sent */ + /* If it is the case, this last write in TXDR is not sent, correspond to a dummy TXIS event */ + if (hi2c->XferCount > 0U) + { + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + } + else + { + if ((tmpoptions == I2C_NEXT_FRAME) || (tmpoptions == I2C_FIRST_FRAME)) + { + /* Last Byte is Transmitted */ + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + } + } + else + { + /* Nothing to do */ + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Master Mode with DMA. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags Interrupt flags to handle. + * @param ITSources Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Master_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources) +{ + uint16_t devaddress; + uint32_t xfermode; + + /* Process Locked */ + __HAL_LOCK(hi2c); + + if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_AF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set corresponding Error Code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + /* No need to generate STOP, it is automatically done */ + /* But enable STOP interrupt, to treat it */ + /* Error callback will be send during stop flag treatment */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_TCR) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + /* Disable TC interrupt */ + __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_TCI); + + if (hi2c->XferCount != 0U) + { + /* Recover Slave address */ + devaddress = (uint16_t)(hi2c->Instance->CR2 & I2C_CR2_SADD); + + /* Prepare the new XferSize to transfer */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + if (hi2c->XferOptions != I2C_NO_OPTION_FRAME) + { + xfermode = hi2c->XferOptions; + } + else + { + xfermode = I2C_AUTOEND_MODE; + } + } + + /* Set the new XferSize in Nbytes register */ + I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, xfermode, I2C_NO_STARTSTOP); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Enable DMA Request */ + if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + } + else + { + /* Call TxCpltCallback() if no stop mode is set */ + if (I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE) + { + /* Call I2C Master Sequential complete process */ + I2C_ITMasterSeqCplt(hi2c); + } + else + { + /* Wrong size Status regarding TCR flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_TC) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + if (hi2c->XferCount == 0U) + { + if (I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE) + { + /* Generate a stop condition in case of no transfer option */ + if (hi2c->XferOptions == I2C_NO_OPTION_FRAME) + { + /* Generate Stop */ + hi2c->Instance->CR2 |= I2C_CR2_STOP; + } + else + { + /* Call I2C Master Sequential complete process */ + I2C_ITMasterSeqCplt(hi2c); + } + } + } + else + { + /* Wrong size Status regarding TC flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_STOPF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) + { + /* Call I2C Master complete process */ + I2C_ITMasterCplt(hi2c, ITFlags); + } + else + { + /* Nothing to do */ + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Memory Mode with DMA. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags Interrupt flags to handle. + * @param ITSources Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Mem_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources) +{ + uint32_t direction = I2C_GENERATE_START_WRITE; + + /* Process Locked */ + __HAL_LOCK(hi2c); + + if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_AF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set corresponding Error Code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + /* No need to generate STOP, it is automatically done */ + /* But enable STOP interrupt, to treat it */ + /* Error callback will be send during stop flag treatment */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_TXIS) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TXI) != RESET)) + { + /* Write LSB part of Memory Address */ + hi2c->Instance->TXDR = hi2c->Memaddress; + + /* Reset Memaddress content */ + hi2c->Memaddress = 0xFFFFFFFFU; + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_TCR) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + /* Disable Interrupt related to address step */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + /* Enable only Error interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + if (hi2c->XferCount != 0U) + { + /* Prepare the new XferSize to transfer */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize, + I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize, + I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Enable DMA Request */ + if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + } + else + { + /* Wrong size Status regarding TCR flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_TC) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + /* Disable Interrupt related to address step */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + /* Enable only Error and NACK interrupt for data transfer */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + direction = I2C_GENERATE_START_READ; + } + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize, + I2C_RELOAD_MODE, direction); + } + else + { + hi2c->XferSize = hi2c->XferCount; + + /* Set NBYTES to write and generate RESTART */ + I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize, + I2C_AUTOEND_MODE, direction); + } + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Enable DMA Request */ + if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_STOPF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) + { + /* Call I2C Master complete process */ + I2C_ITMasterCplt(hi2c, ITFlags); + } + else + { + /* Nothing to do */ + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Slave Mode with DMA. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags Interrupt flags to handle. + * @param ITSources Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Slave_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources) +{ + uint32_t tmpoptions = hi2c->XferOptions; + uint32_t treatdmanack = 0U; + HAL_I2C_StateTypeDef tmpstate; + + /* Process locked */ + __HAL_LOCK(hi2c); + + /* Check if STOPF is set */ + if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_STOPF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) + { + /* Call I2C Slave complete process */ + I2C_ITSlaveCplt(hi2c, ITFlags); + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_AF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) + { + /* Check that I2C transfer finished */ + /* if yes, normal use case, a NACK is sent by the MASTER when Transfer is finished */ + /* Mean XferCount == 0 */ + /* So clear Flag NACKF only */ + if ((I2C_CHECK_IT_SOURCE(ITSources, I2C_CR1_TXDMAEN) != RESET) || + (I2C_CHECK_IT_SOURCE(ITSources, I2C_CR1_RXDMAEN) != RESET)) + { + /* Split check of hdmarx, for MISRA compliance */ + if (hi2c->hdmarx != NULL) + { + if (I2C_CHECK_IT_SOURCE(ITSources, I2C_CR1_RXDMAEN) != RESET) + { + if (I2C_GET_DMA_REMAIN_DATA(hi2c->hdmarx) == 0U) + { + treatdmanack = 1U; + } + } + } + + /* Split check of hdmatx, for MISRA compliance */ + if (hi2c->hdmatx != NULL) + { + if (I2C_CHECK_IT_SOURCE(ITSources, I2C_CR1_TXDMAEN) != RESET) + { + if (I2C_GET_DMA_REMAIN_DATA(hi2c->hdmatx) == 0U) + { + treatdmanack = 1U; + } + } + } + + if (treatdmanack == 1U) + { + if ((hi2c->State == HAL_I2C_STATE_LISTEN) && (tmpoptions == I2C_FIRST_AND_LAST_FRAME)) + /* Same action must be done for (tmpoptions == I2C_LAST_FRAME) which removed for + Warning[Pa134]: left and right operands are identical */ + { + /* Call I2C Listen complete process */ + I2C_ITListenCplt(hi2c, ITFlags); + } + else if ((hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) && (tmpoptions != I2C_NO_OPTION_FRAME)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Last Byte is Transmitted */ + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + else + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + } + } + else + { + /* if no, error use case, a Non-Acknowledge of last Data is generated by the MASTER*/ + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + /* Store current hi2c->State, solve MISRA2012-Rule-13.5 */ + tmpstate = hi2c->State; + + if ((tmpoptions == I2C_FIRST_FRAME) || (tmpoptions == I2C_NEXT_FRAME)) + { + if ((tmpstate == HAL_I2C_STATE_BUSY_TX) || (tmpstate == HAL_I2C_STATE_BUSY_TX_LISTEN)) + { + hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_TX; + } + else if ((tmpstate == HAL_I2C_STATE_BUSY_RX) || (tmpstate == HAL_I2C_STATE_BUSY_RX_LISTEN)) + { + hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_RX; + } + else + { + /* Do nothing */ + } + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, hi2c->ErrorCode); + } + } + } + else + { + /* Only Clear NACK Flag, no DMA treatment is pending */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + } + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_ADDR) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_ADDRI) != RESET)) + { + I2C_ITAddrCplt(hi2c, ITFlags); + } + else + { + /* Nothing to do */ + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Master sends target device address followed by internal memory address for write request. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, + uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, + uint32_t Tickstart) +{ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)MemAddSize, I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE); + + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* If Memory address size is 8Bit */ + if (MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Send Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + } + /* If Memory address size is 16Bit */ + else + { + /* Send MSB of Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); + + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Send LSB of Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + } + + /* Wait until TCR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Master sends target device address followed by internal memory address for read request. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, + uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, + uint32_t Tickstart) +{ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)MemAddSize, I2C_SOFTEND_MODE, I2C_GENERATE_START_WRITE); + + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* If Memory address size is 8Bit */ + if (MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Send Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + } + /* If Memory address size is 16Bit */ + else + { + /* Send MSB of Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); + + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Send LSB of Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + } + + /* Wait until TC flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TC, RESET, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief I2C Address complete process callback. + * @param hi2c I2C handle. + * @param ITFlags Interrupt flags to handle. + * @retval None + */ +static void I2C_ITAddrCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) +{ + uint8_t transferdirection; + uint16_t slaveaddrcode; + uint16_t ownadd1code; + uint16_t ownadd2code; + + /* Prevent unused argument(s) compilation warning */ + UNUSED(ITFlags); + + /* In case of Listen state, need to inform upper layer of address match code event */ + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) + { + transferdirection = I2C_GET_DIR(hi2c); + slaveaddrcode = I2C_GET_ADDR_MATCH(hi2c); + ownadd1code = I2C_GET_OWN_ADDRESS1(hi2c); + ownadd2code = I2C_GET_OWN_ADDRESS2(hi2c); + + /* If 10bits addressing mode is selected */ + if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) + { + if ((slaveaddrcode & SLAVE_ADDR_MSK) == ((ownadd1code >> SLAVE_ADDR_SHIFT) & SLAVE_ADDR_MSK)) + { + slaveaddrcode = ownadd1code; + hi2c->AddrEventCount++; + if (hi2c->AddrEventCount == 2U) + { + /* Reset Address Event counter */ + hi2c->AddrEventCount = 0U; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call Slave Addr callback */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->AddrCallback(hi2c, transferdirection, slaveaddrcode); +#else + HAL_I2C_AddrCallback(hi2c, transferdirection, slaveaddrcode); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + } + else + { + slaveaddrcode = ownadd2code; + + /* Disable ADDR Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call Slave Addr callback */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->AddrCallback(hi2c, transferdirection, slaveaddrcode); +#else + HAL_I2C_AddrCallback(hi2c, transferdirection, slaveaddrcode); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + } + /* else 7 bits addressing mode is selected */ + else + { + /* Disable ADDR Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call Slave Addr callback */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->AddrCallback(hi2c, transferdirection, slaveaddrcode); +#else + HAL_I2C_AddrCallback(hi2c, transferdirection, slaveaddrcode); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + } + /* Else clear address flag only */ + else + { + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + } +} + +/** + * @brief I2C Master sequential complete process. + * @param hi2c I2C handle. + * @retval None + */ +static void I2C_ITMasterSeqCplt(I2C_HandleTypeDef *hi2c) +{ + /* Reset I2C handle mode */ + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* No Generate Stop, to permit restart mode */ + /* The stop will be done at the end of transfer, when I2C_AUTOEND_MODE enable */ + if (hi2c->State == HAL_I2C_STATE_BUSY_TX) + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_MASTER_BUSY_TX; + hi2c->XferISR = NULL; + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MasterTxCpltCallback(hi2c); +#else + HAL_I2C_MasterTxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + /* hi2c->State == HAL_I2C_STATE_BUSY_RX */ + else + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_MASTER_BUSY_RX; + hi2c->XferISR = NULL; + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MasterRxCpltCallback(hi2c); +#else + HAL_I2C_MasterRxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } +} + +/** + * @brief I2C Slave sequential complete process. + * @param hi2c I2C handle. + * @retval None + */ +static void I2C_ITSlaveSeqCplt(I2C_HandleTypeDef *hi2c) +{ + uint32_t tmpcr1value = READ_REG(hi2c->Instance->CR1); + + /* Reset I2C handle mode */ + hi2c->Mode = HAL_I2C_MODE_NONE; + +#if defined(HAL_DMA_MODULE_ENABLED) + /* If a DMA is ongoing, Update handle size context */ + if (I2C_CHECK_IT_SOURCE(tmpcr1value, I2C_CR1_TXDMAEN) != RESET) + { + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + } + else if (I2C_CHECK_IT_SOURCE(tmpcr1value, I2C_CR1_RXDMAEN) != RESET) + { + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + } + else + { + /* Do nothing */ + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) + { + /* Remove HAL_I2C_STATE_SLAVE_BUSY_TX, keep only HAL_I2C_STATE_LISTEN */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_TX; + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->SlaveTxCpltCallback(hi2c); +#else + HAL_I2C_SlaveTxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + + else if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) + { + /* Remove HAL_I2C_STATE_SLAVE_BUSY_RX, keep only HAL_I2C_STATE_LISTEN */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_RX; + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->SlaveRxCpltCallback(hi2c); +#else + HAL_I2C_SlaveRxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + else + { + /* Nothing to do */ + } +} + +/** + * @brief I2C Master complete process. + * @param hi2c I2C handle. + * @param ITFlags Interrupt flags to handle. + * @retval None + */ +static void I2C_ITMasterCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) +{ + uint32_t tmperror; + uint32_t tmpITFlags = ITFlags; + __IO uint32_t tmpreg; + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Disable Interrupts and Store Previous state */ + if (hi2c->State == HAL_I2C_STATE_BUSY_TX) + { + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + hi2c->PreviousState = I2C_STATE_MASTER_BUSY_TX; + } + else if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + hi2c->PreviousState = I2C_STATE_MASTER_BUSY_RX; + } + else + { + /* Do nothing */ + } + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + /* Reset handle parameters */ + hi2c->XferISR = NULL; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + + if (I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set acknowledge error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + + /* Fetch Last receive data if any */ + if ((hi2c->State == HAL_I2C_STATE_ABORT) && (I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_RXNE) != RESET)) + { + /* Read data from RXDR */ + tmpreg = (uint8_t)hi2c->Instance->RXDR; + UNUSED(tmpreg); + } + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Store current volatile hi2c->ErrorCode, misra rule */ + tmperror = hi2c->ErrorCode; + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + if ((hi2c->State == HAL_I2C_STATE_ABORT) || (tmperror != HAL_I2C_ERROR_NONE)) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, hi2c->ErrorCode); + } + /* hi2c->State == HAL_I2C_STATE_BUSY_TX */ + else if (hi2c->State == HAL_I2C_STATE_BUSY_TX) + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + + if (hi2c->Mode == HAL_I2C_MODE_MEM) + { + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MemTxCpltCallback(hi2c); +#else + HAL_I2C_MemTxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + else + { + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MasterTxCpltCallback(hi2c); +#else + HAL_I2C_MasterTxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + } + /* hi2c->State == HAL_I2C_STATE_BUSY_RX */ + else if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + + if (hi2c->Mode == HAL_I2C_MODE_MEM) + { + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MemRxCpltCallback(hi2c); +#else + HAL_I2C_MemRxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + else + { + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MasterRxCpltCallback(hi2c); +#else + HAL_I2C_MasterRxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + } + else + { + /* Nothing to do */ + } +} + +/** + * @brief I2C Slave complete process. + * @param hi2c I2C handle. + * @param ITFlags Interrupt flags to handle. + * @retval None + */ +static void I2C_ITSlaveCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) +{ + uint32_t tmpcr1value = READ_REG(hi2c->Instance->CR1); + uint32_t tmpITFlags = ITFlags; + uint32_t tmpoptions = hi2c->XferOptions; + HAL_I2C_StateTypeDef tmpstate = hi2c->State; + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Disable Interrupts and Store Previous state */ + if ((tmpstate == HAL_I2C_STATE_BUSY_TX) || (tmpstate == HAL_I2C_STATE_BUSY_TX_LISTEN)) + { + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT); + hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_TX; + } + else if ((tmpstate == HAL_I2C_STATE_BUSY_RX) || (tmpstate == HAL_I2C_STATE_BUSY_RX_LISTEN)) + { + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT); + hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_RX; + } + else if (tmpstate == HAL_I2C_STATE_LISTEN) + { + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT | I2C_XFER_RX_IT); + hi2c->PreviousState = I2C_STATE_NONE; + } + else + { + /* Do nothing */ + } + + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* If a DMA is ongoing, Update handle size context */ + if (I2C_CHECK_IT_SOURCE(tmpcr1value, I2C_CR1_TXDMAEN) != RESET) + { + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + if (hi2c->hdmatx != NULL) + { + hi2c->XferCount = (uint16_t)I2C_GET_DMA_REMAIN_DATA(hi2c->hdmatx); + } + } + else if (I2C_CHECK_IT_SOURCE(tmpcr1value, I2C_CR1_RXDMAEN) != RESET) + { + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + if (hi2c->hdmarx != NULL) + { + hi2c->XferCount = (uint16_t)I2C_GET_DMA_REMAIN_DATA(hi2c->hdmarx); + } + } + else + { + /* Do nothing */ + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* Store Last receive data if any */ + if (I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_RXNE) != RESET) + { + /* Remove RXNE flag on temporary variable as read done */ + tmpITFlags &= ~I2C_FLAG_RXNE; + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + if (hi2c->XferSize > 0U) + { + hi2c->XferSize--; + hi2c->XferCount--; + } + } + + /* All data are not transferred, so set error code accordingly */ + if (hi2c->XferCount != 0U) + { + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + + if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(tmpcr1value, I2C_IT_NACKI) != RESET)) + { + /* Check that I2C transfer finished */ + /* if yes, normal use case, a NACK is sent by the MASTER when Transfer is finished */ + /* Mean XferCount == 0*/ + /* So clear Flag NACKF only */ + if (hi2c->XferCount == 0U) + { + if ((hi2c->State == HAL_I2C_STATE_LISTEN) && (tmpoptions == I2C_FIRST_AND_LAST_FRAME)) + /* Same action must be done for (tmpoptions == I2C_LAST_FRAME) which removed for + Warning[Pa134]: left and right operands are identical */ + { + /* Call I2C Listen complete process */ + I2C_ITListenCplt(hi2c, tmpITFlags); + } + else if ((hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) && (tmpoptions != I2C_NO_OPTION_FRAME)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Last Byte is Transmitted */ + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + else + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + } + } + else + { + /* if no, error use case, a Non-Acknowledge of last Data is generated by the MASTER*/ + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + if ((tmpoptions == I2C_FIRST_FRAME) || (tmpoptions == I2C_NEXT_FRAME)) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, hi2c->ErrorCode); + } + } + } + + hi2c->Mode = HAL_I2C_MODE_NONE; + hi2c->XferISR = NULL; + + if (hi2c->ErrorCode != HAL_I2C_ERROR_NONE) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, hi2c->ErrorCode); + + /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */ + if (hi2c->State == HAL_I2C_STATE_LISTEN) + { + /* Call I2C Listen complete process */ + I2C_ITListenCplt(hi2c, tmpITFlags); + } + } + else if (hi2c->XferOptions != I2C_NO_OPTION_FRAME) + { + /* Call the Sequential Complete callback, to inform upper layer of the end of Transfer */ + I2C_ITSlaveSeqCplt(hi2c); + + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->ListenCpltCallback(hi2c); +#else + HAL_I2C_ListenCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + /* Call the corresponding callback to inform upper layer of End of Transfer */ + else if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->SlaveRxCpltCallback(hi2c); +#else + HAL_I2C_SlaveRxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + else + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->SlaveTxCpltCallback(hi2c); +#else + HAL_I2C_SlaveTxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } +} + +/** + * @brief I2C Listen complete process. + * @param hi2c I2C handle. + * @param ITFlags Interrupt flags to handle. + * @retval None + */ +static void I2C_ITListenCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) +{ + /* Reset handle parameters */ + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + hi2c->XferISR = NULL; + + /* Store Last receive data if any */ + if (I2C_CHECK_FLAG(ITFlags, I2C_FLAG_RXNE) != RESET) + { + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + if (hi2c->XferSize > 0U) + { + hi2c->XferSize--; + hi2c->XferCount--; + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + } + + /* Disable all Interrupts*/ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT | I2C_XFER_TX_IT); + + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->ListenCpltCallback(hi2c); +#else + HAL_I2C_ListenCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ +} + +/** + * @brief I2C interrupts error process. + * @param hi2c I2C handle. + * @param ErrorCode Error code to handle. + * @retval None + */ +static void I2C_ITError(I2C_HandleTypeDef *hi2c, uint32_t ErrorCode) +{ + HAL_I2C_StateTypeDef tmpstate = hi2c->State; + +#if defined(HAL_DMA_MODULE_ENABLED) + uint32_t tmppreviousstate; +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* Reset handle parameters */ + hi2c->Mode = HAL_I2C_MODE_NONE; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferCount = 0U; + + /* Set new error code */ + hi2c->ErrorCode |= ErrorCode; + + /* Disable Interrupts */ + if ((tmpstate == HAL_I2C_STATE_LISTEN) || + (tmpstate == HAL_I2C_STATE_BUSY_TX_LISTEN) || + (tmpstate == HAL_I2C_STATE_BUSY_RX_LISTEN)) + { + /* Disable all interrupts, except interrupts related to LISTEN state */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_TX_IT); + + /* keep HAL_I2C_STATE_LISTEN if set */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->XferISR = I2C_Slave_ISR_IT; + } + else + { + /* Disable all interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT | I2C_XFER_TX_IT); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* If state is an abort treatment on going, don't change state */ + /* This change will be do later */ + if (hi2c->State != HAL_I2C_STATE_ABORT) + { + /* Set HAL_I2C_STATE_READY */ + hi2c->State = HAL_I2C_STATE_READY; + + /* Check if a STOPF is detected */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET) + { + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + } + + } + hi2c->XferISR = NULL; + } + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Abort DMA TX transfer if any */ + tmppreviousstate = hi2c->PreviousState; + + if ((hi2c->hdmatx != NULL) && ((tmppreviousstate == I2C_STATE_MASTER_BUSY_TX) || \ + (tmppreviousstate == I2C_STATE_SLAVE_BUSY_TX))) + { + if ((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + } + + if (HAL_DMA_GetState(hi2c->hdmatx) != HAL_DMA_STATE_READY) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); + } + } + else + { + I2C_TreatErrorCallback(hi2c); + } + } + /* Abort DMA RX transfer if any */ + else if ((hi2c->hdmarx != NULL) && ((tmppreviousstate == I2C_STATE_MASTER_BUSY_RX) || \ + (tmppreviousstate == I2C_STATE_SLAVE_BUSY_RX))) + { + if ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + } + + if (HAL_DMA_GetState(hi2c->hdmarx) != HAL_DMA_STATE_READY) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) + { + /* Call Directly hi2c->hdmarx->XferAbortCallback function in case of error */ + hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); + } + } + else + { + I2C_TreatErrorCallback(hi2c); + } + } + else +#endif /* HAL_DMA_MODULE_ENABLED */ + { + I2C_TreatErrorCallback(hi2c); + } +} + +/** + * @brief I2C Error callback treatment. + * @param hi2c I2C handle. + * @retval None + */ +static void I2C_TreatErrorCallback(I2C_HandleTypeDef *hi2c) +{ + if (hi2c->State == HAL_I2C_STATE_ABORT) + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->AbortCpltCallback(hi2c); +#else + HAL_I2C_AbortCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + else + { + hi2c->PreviousState = I2C_STATE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->ErrorCallback(hi2c); +#else + HAL_I2C_ErrorCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } +} + +/** + * @brief I2C Tx data register flush process. + * @param hi2c I2C handle. + * @retval None + */ +static void I2C_Flush_TXDR(I2C_HandleTypeDef *hi2c) +{ + /* If a pending TXIS flag is set */ + /* Write a dummy data in TXDR to clear it */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) != RESET) + { + hi2c->Instance->TXDR = 0x00U; + } + + /* Flush TX register if not empty */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXE) == RESET) + { + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_TXE); + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief DMA I2C master transmit process complete callback. + * @param hdma DMA handle + * @retval None + */ +static void I2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma) +{ + /* Derogation MISRAC2012-Rule-11.5 */ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); + + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* If last transfer, enable STOP interrupt */ + if (hi2c->XferCount == 0U) + { + /* Enable STOP interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + } + /* else prepare a new DMA transfer and enable TCReload interrupt */ + else + { + /* Update Buffer pointer */ + hi2c->pBuffPtr += hi2c->XferSize; + + /* Set the XferSize to transfer */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + } + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->TXDR, + hi2c->XferSize) != HAL_OK) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_DMA); + } + else + { + /* Enable TC interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RELOAD_IT); + } + } +} + + +/** + * @brief DMA I2C slave transmit process complete callback. + * @param hdma DMA handle + * @retval None + */ +static void I2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma) +{ + /* Derogation MISRAC2012-Rule-11.5 */ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); + uint32_t tmpoptions = hi2c->XferOptions; + + if ((tmpoptions == I2C_NEXT_FRAME) || (tmpoptions == I2C_FIRST_FRAME)) + { + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* Last Byte is Transmitted */ + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + else + { + /* No specific action, Master fully manage the generation of STOP condition */ + /* Mean that this generation can arrive at any time, at the end or during DMA process */ + /* So STOP condition should be manage through Interrupt treatment */ + } +} + + +/** + * @brief DMA I2C master receive process complete callback. + * @param hdma DMA handle + * @retval None + */ +static void I2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma) +{ + /* Derogation MISRAC2012-Rule-11.5 */ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); + + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + /* If last transfer, enable STOP interrupt */ + if (hi2c->XferCount == 0U) + { + /* Enable STOP interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + } + /* else prepare a new DMA transfer and enable TCReload interrupt */ + else + { + /* Update Buffer pointer */ + hi2c->pBuffPtr += hi2c->XferSize; + + /* Set the XferSize to transfer */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + } + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)hi2c->pBuffPtr, + hi2c->XferSize) != HAL_OK) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_DMA); + } + else + { + /* Enable TC interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RELOAD_IT); + } + } +} + + +/** + * @brief DMA I2C slave receive process complete callback. + * @param hdma DMA handle + * @retval None + */ +static void I2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma) +{ + /* Derogation MISRAC2012-Rule-11.5 */ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); + uint32_t tmpoptions = hi2c->XferOptions; + + if ((I2C_GET_DMA_REMAIN_DATA(hi2c->hdmarx) == 0U) && \ + (tmpoptions != I2C_NO_OPTION_FRAME)) + { + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + else + { + /* No specific action, Master fully manage the generation of STOP condition */ + /* Mean that this generation can arrive at any time, at the end or during DMA process */ + /* So STOP condition should be manage through Interrupt treatment */ + } +} + + +/** + * @brief DMA I2C communication error callback. + * @param hdma DMA handle + * @retval None + */ +static void I2C_DMAError(DMA_HandleTypeDef *hdma) +{ + /* Derogation MISRAC2012-Rule-11.5 */ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); + + /* Disable Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_DMA); +} + + +/** + * @brief DMA I2C communication abort callback + * (To be called at end of DMA Abort procedure). + * @param hdma DMA handle. + * @retval None + */ +static void I2C_DMAAbort(DMA_HandleTypeDef *hdma) +{ + /* Derogation MISRAC2012-Rule-11.5 */ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); + + /* Reset AbortCpltCallback */ + if (hi2c->hdmatx != NULL) + { + hi2c->hdmatx->XferAbortCallback = NULL; + } + if (hi2c->hdmarx != NULL) + { + hi2c->hdmarx->XferAbortCallback = NULL; + } + + I2C_TreatErrorCallback(hi2c); +} + +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief This function handles I2C Communication Timeout. It waits + * until a flag is no longer in the specified status. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Flag Specifies the I2C flag to check. + * @param Status The actual Flag status (SET or RESET). + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, + uint32_t Timeout, uint32_t Tickstart) +{ + while (__HAL_I2C_GET_FLAG(hi2c, Flag) == Status) + { + /* Check if an error is detected */ + if (I2C_IsErrorOccurred(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) + { + if (__HAL_I2C_GET_FLAG(hi2c, Flag) == Status) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + } + } + } + return HAL_OK; +} + +/** + * @brief This function handles I2C Communication Timeout for specific usage of TXIS flag. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnTXISFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, + uint32_t Tickstart) +{ + while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) == RESET) + { + /* Check if an error is detected */ + if (I2C_IsErrorOccurred(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) == RESET) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + } + } + return HAL_OK; +} + +/** + * @brief This function handles I2C Communication Timeout for specific usage of STOP flag. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, + uint32_t Tickstart) +{ + while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) + { + /* Check if an error is detected */ + if (I2C_IsErrorOccurred(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Check for the Timeout */ + if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + } + return HAL_OK; +} + +/** + * @brief This function handles I2C Communication Timeout for specific usage of RXNE flag. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, + uint32_t Tickstart) +{ + HAL_StatusTypeDef status = HAL_OK; + + while ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == RESET) && (status == HAL_OK)) + { + /* Check if an error is detected */ + if (I2C_IsErrorOccurred(hi2c, Timeout, Tickstart) != HAL_OK) + { + status = HAL_ERROR; + } + + /* Check if a STOPF is detected */ + if ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET) && (status == HAL_OK)) + { + /* Check if an RXNE is pending */ + /* Store Last receive data if any */ + if ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET) && (hi2c->XferSize > 0U)) + { + /* Return HAL_OK */ + /* The Reading of data from RXDR will be done in caller function */ + status = HAL_OK; + } + + /* Check a no-acknowledge have been detected */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET) + { + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + hi2c->ErrorCode = HAL_I2C_ERROR_AF; + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + status = HAL_ERROR; + } + else + { + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + } + } + + /* Check for the Timeout */ + if ((((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) && (status == HAL_OK)) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == RESET) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + status = HAL_ERROR; + } + } + } + return status; +} + +/** + * @brief This function handles errors detection during an I2C Communication. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_IsErrorOccurred(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t itflag = hi2c->Instance->ISR; + uint32_t error_code = 0; + uint32_t tickstart = Tickstart; + uint32_t tmp1; + HAL_I2C_ModeTypeDef tmp2; + + if (HAL_IS_BIT_SET(itflag, I2C_FLAG_AF)) + { + /* Clear NACKF Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Wait until STOP Flag is set or timeout occurred */ + /* AutoEnd should be initiate after AF */ + while ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) && (status == HAL_OK)) + { + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + tmp1 = (uint32_t)(hi2c->Instance->CR2 & I2C_CR2_STOP); + tmp2 = hi2c->Mode; + + /* In case of I2C still busy, try to regenerate a STOP manually */ + if ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET) && \ + (tmp1 != I2C_CR2_STOP) && \ + (tmp2 != HAL_I2C_MODE_SLAVE)) + { + /* Generate Stop */ + hi2c->Instance->CR2 |= I2C_CR2_STOP; + + /* Update Tick with new reference */ + tickstart = HAL_GetTick(); + } + + while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) + { + /* Check for the Timeout */ + if ((HAL_GetTick() - tickstart) > I2C_TIMEOUT_STOPF) + { + error_code |= HAL_I2C_ERROR_TIMEOUT; + + status = HAL_ERROR; + + break; + } + } + } + } + } + + /* In case STOP Flag is detected, clear it */ + if (status == HAL_OK) + { + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + } + + error_code |= HAL_I2C_ERROR_AF; + + status = HAL_ERROR; + } + + /* Refresh Content of Status register */ + itflag = hi2c->Instance->ISR; + + /* Then verify if an additional errors occurs */ + /* Check if a Bus error occurred */ + if (HAL_IS_BIT_SET(itflag, I2C_FLAG_BERR)) + { + error_code |= HAL_I2C_ERROR_BERR; + + /* Clear BERR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR); + + status = HAL_ERROR; + } + + /* Check if an Over-Run/Under-Run error occurred */ + if (HAL_IS_BIT_SET(itflag, I2C_FLAG_OVR)) + { + error_code |= HAL_I2C_ERROR_OVR; + + /* Clear OVR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR); + + status = HAL_ERROR; + } + + /* Check if an Arbitration Loss error occurred */ + if (HAL_IS_BIT_SET(itflag, I2C_FLAG_ARLO)) + { + error_code |= HAL_I2C_ERROR_ARLO; + + /* Clear ARLO flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO); + + status = HAL_ERROR; + } + + if (status != HAL_OK) + { + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->ErrorCode |= error_code; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + } + + return status; +} + +/** + * @brief Handles I2Cx communication when starting transfer or during transfer (TC or TCR flag are set). + * @param hi2c I2C handle. + * @param DevAddress Specifies the slave address to be programmed. + * @param Size Specifies the number of bytes to be programmed. + * This parameter must be a value between 0 and 255. + * @param Mode New state of the I2C START condition generation. + * This parameter can be one of the following values: + * @arg @ref I2C_RELOAD_MODE Enable Reload mode . + * @arg @ref I2C_AUTOEND_MODE Enable Automatic end mode. + * @arg @ref I2C_SOFTEND_MODE Enable Software end mode. + * @param Request New state of the I2C START condition generation. + * This parameter can be one of the following values: + * @arg @ref I2C_NO_STARTSTOP Don't Generate stop and start condition. + * @arg @ref I2C_GENERATE_STOP Generate stop condition (Size should be set to 0). + * @arg @ref I2C_GENERATE_START_READ Generate Restart for read request. + * @arg @ref I2C_GENERATE_START_WRITE Generate Restart for write request. + * @retval None + */ +static void I2C_TransferConfig(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t Size, uint32_t Mode, + uint32_t Request) +{ + uint32_t tmp; + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_TRANSFER_MODE(Mode)); + assert_param(IS_TRANSFER_REQUEST(Request)); + + /* Declaration of tmp to prevent undefined behavior of volatile usage */ + tmp = ((uint32_t)(((uint32_t)DevAddress & I2C_CR2_SADD) | \ + (((uint32_t)Size << I2C_CR2_NBYTES_Pos) & I2C_CR2_NBYTES) | \ + (uint32_t)Mode | (uint32_t)Request) & (~0x80000000U)); + + /* update CR2 register */ + MODIFY_REG(hi2c->Instance->CR2, \ + ((I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RELOAD | I2C_CR2_AUTOEND | \ + (I2C_CR2_RD_WRN & (uint32_t)(Request >> (31U - I2C_CR2_RD_WRN_Pos))) | \ + I2C_CR2_START | I2C_CR2_STOP)), tmp); +} + +/** + * @brief Manage the enabling of Interrupts. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param InterruptRequest Value of @ref I2C_Interrupt_configuration_definition. + * @retval None + */ +static void I2C_Enable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest) +{ + uint32_t tmpisr = 0U; + +#if defined(HAL_DMA_MODULE_ENABLED) + if ((hi2c->XferISR != I2C_Master_ISR_DMA) && \ + (hi2c->XferISR != I2C_Slave_ISR_DMA) && \ + (hi2c->XferISR != I2C_Mem_ISR_DMA)) +#endif /* HAL_DMA_MODULE_ENABLED */ + { + if ((InterruptRequest & I2C_XFER_LISTEN_IT) == I2C_XFER_LISTEN_IT) + { + /* Enable ERR, STOP, NACK and ADDR interrupts */ + tmpisr |= I2C_IT_ADDRI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + + if ((InterruptRequest & I2C_XFER_TX_IT) == I2C_XFER_TX_IT) + { + /* Enable ERR, TC, STOP, NACK and TXI interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_TXI; + } + + if ((InterruptRequest & I2C_XFER_RX_IT) == I2C_XFER_RX_IT) + { + /* Enable ERR, TC, STOP, NACK and RXI interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_RXI; + } + + if (InterruptRequest == I2C_XFER_ERROR_IT) + { + /* Enable ERR and NACK interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_NACKI; + } + + if (InterruptRequest == I2C_XFER_CPLT_IT) + { + /* Enable STOP interrupts */ + tmpisr |= I2C_IT_STOPI; + } + } + +#if defined(HAL_DMA_MODULE_ENABLED) + else + { + if ((InterruptRequest & I2C_XFER_LISTEN_IT) == I2C_XFER_LISTEN_IT) + { + /* Enable ERR, STOP, NACK and ADDR interrupts */ + tmpisr |= I2C_IT_ADDRI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + + if ((InterruptRequest & I2C_XFER_TX_IT) == I2C_XFER_TX_IT) + { + /* Enable ERR, TC, STOP, NACK and TXI interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_TXI; + } + + if ((InterruptRequest & I2C_XFER_RX_IT) == I2C_XFER_RX_IT) + { + /* Enable ERR, TC, STOP, NACK and RXI interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_RXI; + } + + if (InterruptRequest == I2C_XFER_ERROR_IT) + { + /* Enable ERR and NACK interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_NACKI; + } + + if (InterruptRequest == I2C_XFER_CPLT_IT) + { + /* Enable STOP interrupts */ + tmpisr |= (I2C_IT_STOPI | I2C_IT_TCI); + } + + if (InterruptRequest == I2C_XFER_RELOAD_IT) + { + /* Enable TC interrupts */ + tmpisr |= I2C_IT_TCI; + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* Enable interrupts only at the end */ + /* to avoid the risk of I2C interrupt handle execution before */ + /* all interrupts requested done */ + __HAL_I2C_ENABLE_IT(hi2c, tmpisr); +} + +/** + * @brief Manage the disabling of Interrupts. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param InterruptRequest Value of @ref I2C_Interrupt_configuration_definition. + * @retval None + */ +static void I2C_Disable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest) +{ + uint32_t tmpisr = 0U; + + if ((InterruptRequest & I2C_XFER_TX_IT) == I2C_XFER_TX_IT) + { + /* Disable TC and TXI interrupts */ + tmpisr |= I2C_IT_TCI | I2C_IT_TXI; + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) != (uint32_t)HAL_I2C_STATE_LISTEN) + { + /* Disable NACK and STOP interrupts */ + tmpisr |= I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + } + + if ((InterruptRequest & I2C_XFER_RX_IT) == I2C_XFER_RX_IT) + { + /* Disable TC and RXI interrupts */ + tmpisr |= I2C_IT_TCI | I2C_IT_RXI; + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) != (uint32_t)HAL_I2C_STATE_LISTEN) + { + /* Disable NACK and STOP interrupts */ + tmpisr |= I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + } + + if ((InterruptRequest & I2C_XFER_LISTEN_IT) == I2C_XFER_LISTEN_IT) + { + /* Disable ADDR, NACK and STOP interrupts */ + tmpisr |= I2C_IT_ADDRI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + + if (InterruptRequest == I2C_XFER_ERROR_IT) + { + /* Enable ERR and NACK interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_NACKI; + } + + if (InterruptRequest == I2C_XFER_CPLT_IT) + { + /* Enable STOP interrupts */ + tmpisr |= I2C_IT_STOPI; + } + + if (InterruptRequest == I2C_XFER_RELOAD_IT) + { + /* Enable TC interrupts */ + tmpisr |= I2C_IT_TCI; + } + + /* Disable interrupts only at the end */ + /* to avoid a breaking situation like at "t" time */ + /* all disable interrupts request are not done */ + __HAL_I2C_DISABLE_IT(hi2c, tmpisr); +} + +/** + * @brief Convert I2Cx OTHER_xxx XferOptions to functional XferOptions. + * @param hi2c I2C handle. + * @retval None + */ +static void I2C_ConvertOtherXferOptions(I2C_HandleTypeDef *hi2c) +{ + /* if user set XferOptions to I2C_OTHER_FRAME */ + /* it request implicitly to generate a restart condition */ + /* set XferOptions to I2C_FIRST_FRAME */ + if (hi2c->XferOptions == I2C_OTHER_FRAME) + { + hi2c->XferOptions = I2C_FIRST_FRAME; + } + /* else if user set XferOptions to I2C_OTHER_AND_LAST_FRAME */ + /* it request implicitly to generate a restart condition */ + /* then generate a stop condition at the end of transfer */ + /* set XferOptions to I2C_FIRST_AND_LAST_FRAME */ + else if (hi2c->XferOptions == I2C_OTHER_AND_LAST_FRAME) + { + hi2c->XferOptions = I2C_FIRST_AND_LAST_FRAME; + } + else + { + /* Nothing to do */ + } +} + +/** + * @} + */ + +#endif /* HAL_I2C_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_i2c_ex.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_i2c_ex.c new file mode 100644 index 0000000..eb31914 --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_i2c_ex.c @@ -0,0 +1,354 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_i2c_ex.c + * @author MCD Application Team + * @brief I2C Extended HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of I2C Extended peripheral: + * + Filter Mode Functions + * + WakeUp Mode Functions + * + FastModePlus Functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### I2C peripheral Extended features ##### + ============================================================================== + + [..] Comparing to other previous devices, the I2C interface for STM32WBxx + devices contains the following additional features + + (+) Possibility to disable or enable Analog Noise Filter + (+) Use of a configured Digital Noise Filter + (+) Disable or enable wakeup from Stop mode(s) + (+) Disable or enable Fast Mode Plus + + ##### How to use this driver ##### + ============================================================================== + [..] This driver provides functions to configure Noise Filter and Wake Up Feature + (#) Configure I2C Analog noise filter using the function HAL_I2CEx_ConfigAnalogFilter() + (#) Configure I2C Digital noise filter using the function HAL_I2CEx_ConfigDigitalFilter() + (#) Configure the enable or disable of I2C Wake Up Mode using the functions : + (++) HAL_I2CEx_EnableWakeUp() + (++) HAL_I2CEx_DisableWakeUp() + (#) Configure the enable or disable of fast mode plus driving capability using the functions : + (++) HAL_I2CEx_EnableFastModePlus() + (++) HAL_I2CEx_DisableFastModePlus() + @endverbatim + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @defgroup I2CEx I2CEx + * @brief I2C Extended HAL module driver + * @{ + */ + +#ifdef HAL_I2C_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup I2CEx_Exported_Functions I2C Extended Exported Functions + * @{ + */ + +/** @defgroup I2CEx_Exported_Functions_Group1 Filter Mode Functions + * @brief Filter Mode Functions + * +@verbatim + =============================================================================== + ##### Filter Mode Functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure Noise Filters + +@endverbatim + * @{ + */ + +/** + * @brief Configure I2C Analog noise filter. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @param AnalogFilter New state of the Analog filter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_ConfigAnalogFilter(I2C_HandleTypeDef *hi2c, uint32_t AnalogFilter) +{ + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_I2C_ANALOG_FILTER(AnalogFilter)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Reset I2Cx ANOFF bit */ + hi2c->Instance->CR1 &= ~(I2C_CR1_ANFOFF); + + /* Set analog filter bit*/ + hi2c->Instance->CR1 |= AnalogFilter; + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Configure I2C Digital noise filter. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @param DigitalFilter Coefficient of digital noise filter between Min_Data=0x00 and Max_Data=0x0F. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_ConfigDigitalFilter(I2C_HandleTypeDef *hi2c, uint32_t DigitalFilter) +{ + uint32_t tmpreg; + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_I2C_DIGITAL_FILTER(DigitalFilter)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Get the old register value */ + tmpreg = hi2c->Instance->CR1; + + /* Reset I2Cx DNF bits [11:8] */ + tmpreg &= ~(I2C_CR1_DNF); + + /* Set I2Cx DNF coefficient */ + tmpreg |= DigitalFilter << 8U; + + /* Store the new register value */ + hi2c->Instance->CR1 = tmpreg; + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @} + */ + +/** @defgroup I2CEx_Exported_Functions_Group2 WakeUp Mode Functions + * @brief WakeUp Mode Functions + * +@verbatim + =============================================================================== + ##### WakeUp Mode Functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure Wake Up Feature + +@endverbatim + * @{ + */ + +/** + * @brief Enable I2C wakeup from Stop mode(s). + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_EnableWakeUp(I2C_HandleTypeDef *hi2c) +{ + /* Check the parameters */ + assert_param(IS_I2C_WAKEUP_FROMSTOP_INSTANCE(hi2c->Instance)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Enable wakeup from stop mode */ + hi2c->Instance->CR1 |= I2C_CR1_WUPEN; + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Disable I2C wakeup from Stop mode(s). + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_DisableWakeUp(I2C_HandleTypeDef *hi2c) +{ + /* Check the parameters */ + assert_param(IS_I2C_WAKEUP_FROMSTOP_INSTANCE(hi2c->Instance)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Enable wakeup from stop mode */ + hi2c->Instance->CR1 &= ~(I2C_CR1_WUPEN); + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @} + */ + +/** @defgroup I2CEx_Exported_Functions_Group3 Fast Mode Plus Functions + * @brief Fast Mode Plus Functions + * +@verbatim + =============================================================================== + ##### Fast Mode Plus Functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure Fast Mode Plus + +@endverbatim + * @{ + */ + +/** + * @brief Enable the I2C fast mode plus driving capability. + * @param ConfigFastModePlus Selects the pin. + * This parameter can be one of the @ref I2CEx_FastModePlus values + * @note For I2C1, fast mode plus driving capability can be enabled on all selected + * I2C1 pins using I2C_FASTMODEPLUS_I2C1 parameter or independently + * on each one of the following pins PB6, PB7, PB8 and PB9. + * @note For remaining I2C1 pins (PA14, PA15...) fast mode plus driving capability + * can be enabled only by using I2C_FASTMODEPLUS_I2C1 parameter. + * @note For all I2C3 pins fast mode plus driving capability can be enabled + * only by using I2C_FASTMODEPLUS_I2C3 parameter. + * @retval None + */ +void HAL_I2CEx_EnableFastModePlus(uint32_t ConfigFastModePlus) +{ + /* Check the parameter */ + assert_param(IS_I2C_FASTMODEPLUS(ConfigFastModePlus)); + + /* Enable fast mode plus driving capability for selected pin */ + SET_BIT(SYSCFG->CFGR1, (uint32_t)ConfigFastModePlus); +} + +/** + * @brief Disable the I2C fast mode plus driving capability. + * @param ConfigFastModePlus Selects the pin. + * This parameter can be one of the @ref I2CEx_FastModePlus values + * @note For I2C1, fast mode plus driving capability can be disabled on all selected + * I2C1 pins using I2C_FASTMODEPLUS_I2C1 parameter or independently + * on each one of the following pins PB6, PB7, PB8 and PB9. + * @note For remaining I2C1 pins (PA14, PA15...) fast mode plus driving capability + * can be disabled only by using I2C_FASTMODEPLUS_I2C1 parameter. + * @note For all I2C3 pins fast mode plus driving capability can be disabled + * only by using I2C_FASTMODEPLUS_I2C3 parameter. + * @retval None + */ +void HAL_I2CEx_DisableFastModePlus(uint32_t ConfigFastModePlus) +{ + /* Check the parameter */ + assert_param(IS_I2C_FASTMODEPLUS(ConfigFastModePlus)); + + /* Disable fast mode plus driving capability for selected pin */ + CLEAR_BIT(SYSCFG->CFGR1, (uint32_t)ConfigFastModePlus); +} +/** + * @} + */ +/** + * @} + */ + +#endif /* HAL_I2C_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_ipcc.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_ipcc.c new file mode 100644 index 0000000..22d16f8 --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_ipcc.c @@ -0,0 +1,755 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_ipcc.c + * @author MCD Application Team + * @brief IPCC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Inter-Processor communication controller + * peripherals (IPCC). + * + Initialization and de-initialization functions + * + Configuration, notification and interrupts handling + * + Peripheral State and Error functions + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The IPCC HAL driver can be used as follows: + + (#) Declare a IPCC_HandleTypeDef handle structure, for example: IPCC_HandleTypeDef hipcc; + (#) Initialize the IPCC low level resources by implementing the HAL_IPCC_MspInit() API: + (##) Enable the IPCC interface clock + (##) NVIC configuration if you need to use interrupt process + (+++) Configure the IPCC interrupt priority + (+++) Enable the NVIC IPCC IRQ + + (#) Initialize the IPCC registers by calling the HAL_IPCC_Init() API which trig + HAL_IPCC_MspInit(). + + (#) Implement the interrupt callbacks for transmission and reception to use the driver in interrupt mode + + (#) Associate those callback to the corresponding channel and direction using HAL_IPCC_ConfigChannel(). + This is the interrupt mode. + If no callback are configured for a given channel and direction, it is up to the user to poll the + status of the communication (polling mode). + + (#) Notify the other MCU when a message is available in a chosen channel + or when a message has been retrieved from a chosen channel by calling + the HAL_IPCC_NotifyCPU() API. + +@endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +#if defined(IPCC) +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @addtogroup IPCC + * @{ + */ + +#ifdef HAL_IPCC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup IPCC_Private_Constants IPCC Private Constants + * @{ + */ +#define IPCC_ALL_RX_BUF 0x0000003FU /*!< Mask for all RX buffers. */ +#define IPCC_ALL_TX_BUF 0x003F0000U /*!< Mask for all TX buffers. */ +#define CHANNEL_INDEX_MASK 0x0000000FU /*!< Mask the channel index to avoid overflow */ +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup IPCC_Private_Functions IPCC Private Functions + * @{ + */ +void IPCC_MaskInterrupt(uint32_t ChannelIndex, IPCC_CHANNELDirTypeDef ChannelDir); +void IPCC_UnmaskInterrupt(uint32_t ChannelIndex, IPCC_CHANNELDirTypeDef ChannelDir); +void IPCC_SetDefaultCallbacks(IPCC_HandleTypeDef *hipcc); +void IPCC_Reset_Register(IPCC_CommonTypeDef *Instance); +/** + * @} + */ + +/** @addtogroup IPCC_Exported_Functions + * @{ + */ + +/** @addtogroup IPCC_Exported_Functions_Group1 + * @brief Initialization and de-initialization functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + deinitialize the IPCC peripheral: + + (+) User must Implement HAL_IPCC_MspInit() function in which he configures + all related peripherals resources (CLOCK and NVIC ). + + (+) Call the function HAL_IPCC_Init() to configure the IPCC register. + + (+) Call the function HAL_PKA_DeInit() to restore the default configuration + of the selected IPCC peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the IPCC peripheral. + * @param hipcc IPCC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IPCC_Init(IPCC_HandleTypeDef *hipcc) +{ + HAL_StatusTypeDef err = HAL_OK; + + /* Check the IPCC handle allocation */ + if (hipcc != NULL) + { + /* Check the parameters */ + assert_param(IS_IPCC_ALL_INSTANCE(hipcc->Instance)); + + IPCC_CommonTypeDef *currentInstance = IPCC_C1; + + if (hipcc->State == HAL_IPCC_STATE_RESET) + { + /* Init the low level hardware : CLOCK, NVIC */ + HAL_IPCC_MspInit(hipcc); + } + + /* Reset all registers of the current cpu to default state */ + IPCC_Reset_Register(currentInstance); + + /* Activate the interrupts */ + currentInstance->CR |= (IPCC_CR_RXOIE | IPCC_CR_TXFIE); + + /* Clear callback pointers */ + IPCC_SetDefaultCallbacks(hipcc); + + /* Reset all callback notification request */ + hipcc->callbackRequest = 0; + + hipcc->State = HAL_IPCC_STATE_READY; + } + else + { + err = HAL_ERROR; + } + + return err; +} + +/** + * @brief DeInitialize the IPCC peripheral. + * @param hipcc IPCC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IPCC_DeInit(IPCC_HandleTypeDef *hipcc) +{ + HAL_StatusTypeDef err = HAL_OK; + + /* Check the IPCC handle allocation */ + if (hipcc != NULL) + { + assert_param(IS_IPCC_ALL_INSTANCE(hipcc->Instance)); + IPCC_CommonTypeDef *currentInstance = IPCC_C1; + + /* Set the state to busy */ + hipcc->State = HAL_IPCC_STATE_BUSY; + + /* Reset all registers of the current cpu to default state */ + IPCC_Reset_Register(currentInstance); + + /* Clear callback pointers */ + IPCC_SetDefaultCallbacks(hipcc); + + /* Reset all callback notification request */ + hipcc->callbackRequest = 0; + + /* DeInit the low level hardware : CLOCK, NVIC */ + HAL_IPCC_MspDeInit(hipcc); + + hipcc->State = HAL_IPCC_STATE_RESET; + } + else + { + err = HAL_ERROR; + } + + return err; +} + +/** + * @brief Initialize the IPCC MSP. + * @param hipcc IPCC handle + * @retval None + */ +__weak void HAL_IPCC_MspInit(IPCC_HandleTypeDef *hipcc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hipcc); + + /* NOTE : This function should not be modified. When the callback is needed + the HAL_IPCC_MspInit should be implemented in the user file + */ +} + +/** + * @brief IPCC MSP DeInit + * @param hipcc IPCC handle + * @retval None + */ +__weak void HAL_IPCC_MspDeInit(IPCC_HandleTypeDef *hipcc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hipcc); + + /* NOTE : This function should not be modified. When the callback is needed + the HAL_IPCC_MspDeInit should be implemented in the user file + */ +} + +/** + * @} + */ + + +/** @addtogroup IPCC_Exported_Functions_Group2 + * @brief Configuration, notification and Irq handling functions. + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions to allow two MCU to communicate. + + (#) For a given channel (from 0 to IPCC_CHANNEL_NUMBER), for a given direction + IPCC_CHANNEL_DIR_TX or IPCC_CHANNEL_DIR_RX, you can choose to communicate + in polling mode or in interrupt mode using IPCC. + By default, the IPCC HAL driver handle the communication in polling mode. + By setting a callback for a channel/direction, this communication use + the interrupt mode. + + (#) Polling mode: + (++) To transmit information, use HAL_IPCC_NotifyCPU() with + IPCC_CHANNEL_DIR_TX. To know when the other processor has handled + the notification, poll the communication using HAL_IPCC_NotifyCPU + with IPCC_CHANNEL_DIR_TX. + + (++) To receive information, poll the status of the communication with + HAL_IPCC_GetChannelStatus with IPCC_CHANNEL_DIR_RX. To notify the other + processor that the information has been received, use HAL_IPCC_NotifyCPU + with IPCC_CHANNEL_DIR_RX. + + (#) Interrupt mode: + (++) Configure a callback for the channel and the direction using HAL_IPCC_ConfigChannel(). + This callback will be triggered under interrupt. + + (++) To transmit information, use HAL_IPCC_NotifyCPU() with + IPCC_CHANNEL_DIR_TX. The callback configured with HAL_IPCC_ConfigChannel() and + IPCC_CHANNEL_DIR_TX will be triggered once the communication has been handled by the + other processor. + + (++) To receive information, the callback configured with HAL_IPCC_ConfigChannel() and + IPCC_CHANNEL_DIR_RX will be triggered on reception of a communication.To notify the other + processor that the information has been received, use HAL_IPCC_NotifyCPU + with IPCC_CHANNEL_DIR_RX. + + (++) HAL_IPCC_TX_IRQHandler must be added to the IPCC TX IRQHandler + + (++) HAL_IPCC_RX_IRQHandler must be added to the IPCC RX IRQHandler +@endverbatim + * @{ + */ + +/** + * @brief Activate the callback notification on receive/transmit interrupt + * @param hipcc IPCC handle + * @param ChannelIndex Channel number + * This parameter can be one of the following values: + * @arg IPCC_CHANNEL_1: IPCC Channel 1 + * @arg IPCC_CHANNEL_2: IPCC Channel 2 + * @arg IPCC_CHANNEL_3: IPCC Channel 3 + * @arg IPCC_CHANNEL_4: IPCC Channel 4 + * @arg IPCC_CHANNEL_5: IPCC Channel 5 + * @arg IPCC_CHANNEL_6: IPCC Channel 6 + * @param ChannelDir Channel direction + * @param cb Interrupt callback + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IPCC_ActivateNotification(IPCC_HandleTypeDef *hipcc, + uint32_t ChannelIndex, IPCC_CHANNELDirTypeDef ChannelDir, + ChannelCb cb) +{ + HAL_StatusTypeDef err = HAL_OK; + + /* Check the IPCC handle allocation */ + if (hipcc != NULL) + { + /* Check the parameters */ + assert_param(IS_IPCC_ALL_INSTANCE(hipcc->Instance)); + + /* Check IPCC state */ + if (hipcc->State == HAL_IPCC_STATE_READY) + { + /* Set callback and register masking information */ + if (ChannelDir == IPCC_CHANNEL_DIR_TX) + { + hipcc->ChannelCallbackTx[ChannelIndex] = cb; + hipcc->callbackRequest |= (IPCC_MR_CH1FM_Msk << (ChannelIndex & CHANNEL_INDEX_MASK)); + } + else + { + hipcc->ChannelCallbackRx[ChannelIndex] = cb; + hipcc->callbackRequest |= (IPCC_MR_CH1OM_Msk << (ChannelIndex & CHANNEL_INDEX_MASK)); + } + + /* Unmask only the channels in reception (Transmission channel mask/unmask is done in HAL_IPCC_NotifyCPU) */ + if (ChannelDir == IPCC_CHANNEL_DIR_RX) + { + IPCC_UnmaskInterrupt(ChannelIndex, ChannelDir); + } + } + else + { + err = HAL_ERROR; + } + } + else + { + err = HAL_ERROR; + } + return err; +} + +/** + * @brief Remove the callback notification on receive/transmit interrupt + * @param hipcc IPCC handle + * @param ChannelIndex Channel number + * This parameter can be one of the following values: + * @arg IPCC_CHANNEL_1: IPCC Channel 1 + * @arg IPCC_CHANNEL_2: IPCC Channel 2 + * @arg IPCC_CHANNEL_3: IPCC Channel 3 + * @arg IPCC_CHANNEL_4: IPCC Channel 4 + * @arg IPCC_CHANNEL_5: IPCC Channel 5 + * @arg IPCC_CHANNEL_6: IPCC Channel 6 + * @param ChannelDir Channel direction + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IPCC_DeActivateNotification(IPCC_HandleTypeDef *hipcc, + uint32_t ChannelIndex, IPCC_CHANNELDirTypeDef ChannelDir) +{ + HAL_StatusTypeDef err = HAL_OK; + + /* Check the IPCC handle allocation */ + if (hipcc != NULL) + { + /* Check the parameters */ + assert_param(IS_IPCC_ALL_INSTANCE(hipcc->Instance)); + + /* Check IPCC state */ + if (hipcc->State == HAL_IPCC_STATE_READY) + { + /* Set default callback and register masking information */ + if (ChannelDir == IPCC_CHANNEL_DIR_TX) + { + hipcc->ChannelCallbackTx[ChannelIndex] = HAL_IPCC_TxCallback; + hipcc->callbackRequest &= ~(IPCC_MR_CH1FM_Msk << (ChannelIndex & CHANNEL_INDEX_MASK)); + } + else + { + hipcc->ChannelCallbackRx[ChannelIndex] = HAL_IPCC_RxCallback; + hipcc->callbackRequest &= ~(IPCC_MR_CH1OM_Msk << (ChannelIndex & CHANNEL_INDEX_MASK)); + } + + /* Mask the interrupt */ + IPCC_MaskInterrupt(ChannelIndex, ChannelDir); + } + else + { + err = HAL_ERROR; + } + } + else + { + err = HAL_ERROR; + } + return err; +} + +/** + * @brief Get state of IPCC channel + * @param hipcc IPCC handle + * @param ChannelIndex Channel number + * This parameter can be one of the following values: + * @arg IPCC_CHANNEL_1: IPCC Channel 1 + * @arg IPCC_CHANNEL_2: IPCC Channel 2 + * @arg IPCC_CHANNEL_3: IPCC Channel 3 + * @arg IPCC_CHANNEL_4: IPCC Channel 4 + * @arg IPCC_CHANNEL_5: IPCC Channel 5 + * @arg IPCC_CHANNEL_6: IPCC Channel 6 + * @param ChannelDir Channel direction + * @retval Channel status + */ +IPCC_CHANNELStatusTypeDef HAL_IPCC_GetChannelStatus(IPCC_HandleTypeDef const *const hipcc, + uint32_t ChannelIndex, IPCC_CHANNELDirTypeDef ChannelDir) +{ + uint32_t channel_state; + IPCC_CommonTypeDef *currentInstance = IPCC_C1; + IPCC_CommonTypeDef *otherInstance = IPCC_C2; + + /* Check the parameters */ + assert_param(IS_IPCC_ALL_INSTANCE(hipcc->Instance)); + + /* Read corresponding channel depending of the MCU and the direction */ + if (ChannelDir == IPCC_CHANNEL_DIR_TX) + { + channel_state = (currentInstance->SR) & (IPCC_SR_CH1F_Msk << (ChannelIndex & CHANNEL_INDEX_MASK)); + } + else + { + channel_state = (otherInstance->SR) & (IPCC_SR_CH1F_Msk << (ChannelIndex & CHANNEL_INDEX_MASK)); + } + + return (channel_state == 0UL) ? IPCC_CHANNEL_STATUS_FREE : IPCC_CHANNEL_STATUS_OCCUPIED ; +} + +/** + * @brief Notify remote processor + * @param hipcc IPCC handle + * @param ChannelIndex Channel number + * This parameter can be one of the following values: + * @arg IPCC_CHANNEL_1: IPCC Channel 1 + * @arg IPCC_CHANNEL_2: IPCC Channel 2 + * @arg IPCC_CHANNEL_3: IPCC Channel 3 + * @arg IPCC_CHANNEL_4: IPCC Channel 4 + * @arg IPCC_CHANNEL_5: IPCC Channel 5 + * @arg IPCC_CHANNEL_6: IPCC Channel 6 + * @param ChannelDir Channel direction + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IPCC_NotifyCPU(IPCC_HandleTypeDef const *const hipcc, + uint32_t ChannelIndex, IPCC_CHANNELDirTypeDef ChannelDir) +{ + HAL_StatusTypeDef err = HAL_OK; + uint32_t mask; + IPCC_CommonTypeDef *currentInstance = IPCC_C1; + + /* Check the parameters */ + assert_param(IS_IPCC_ALL_INSTANCE(hipcc->Instance)); + + /* Check if IPCC is initialized */ + if (hipcc->State == HAL_IPCC_STATE_READY) + { + /* For IPCC_CHANNEL_DIR_TX, set the status. For IPCC_CHANNEL_DIR_RX, clear the status */ + currentInstance->SCR |= ((ChannelDir == IPCC_CHANNEL_DIR_TX) ? IPCC_SCR_CH1S : + IPCC_SCR_CH1C) + << (ChannelIndex & CHANNEL_INDEX_MASK); + + /* Unmask interrupt if the callback is requested */ + mask = ((ChannelDir == IPCC_CHANNEL_DIR_TX) ? IPCC_MR_CH1FM_Msk : + IPCC_MR_CH1OM_Msk) << (ChannelIndex & CHANNEL_INDEX_MASK); + if ((hipcc->callbackRequest & mask) == mask) + { + IPCC_UnmaskInterrupt(ChannelIndex, ChannelDir); + } + } + else + { + err = HAL_ERROR; + } + + return err; +} + +/** + * @} + */ + +/** @addtogroup IPCC_IRQ_Handler_and_Callbacks + * @{ + */ + +/** + * @brief This function handles IPCC Tx Free interrupt request. + * @param hipcc IPCC handle + * @retval None + */ +void HAL_IPCC_TX_IRQHandler(IPCC_HandleTypeDef *const hipcc) +{ + uint32_t irqmask; + uint32_t bit_pos; + uint32_t ch_count = 0U; + IPCC_CommonTypeDef *currentInstance = IPCC_C1; + + /* check the Tx free channels which are not masked */ + irqmask = ~(currentInstance->MR) & IPCC_ALL_TX_BUF; + irqmask = irqmask & ~(currentInstance->SR << IPCC_MR_CH1FM_Pos); + + while (irqmask != 0UL) /* if several bits are set, it loops to serve all of them */ + { + bit_pos = 1UL << (IPCC_MR_CH1FM_Pos + (ch_count & CHANNEL_INDEX_MASK)); + + if ((irqmask & bit_pos) != 0U) + { + /* mask the channel Free interrupt */ + currentInstance->MR |= bit_pos; + if (hipcc->ChannelCallbackTx[ch_count] != NULL) + { + hipcc->ChannelCallbackTx[ch_count](hipcc, ch_count, IPCC_CHANNEL_DIR_TX); + } + irqmask = irqmask & ~(bit_pos); + } + ch_count++; + } +} + +/** + * @brief This function handles IPCC Rx Occupied interrupt request. + * @param hipcc : IPCC handle + * @retval None + */ +void HAL_IPCC_RX_IRQHandler(IPCC_HandleTypeDef *const hipcc) +{ + uint32_t irqmask; + uint32_t bit_pos; + uint32_t ch_count = 0U; + IPCC_CommonTypeDef *currentInstance = IPCC_C1; + IPCC_CommonTypeDef *otherInstance = IPCC_C2; + + /* check the Rx occupied channels which are not masked */ + irqmask = ~(currentInstance->MR) & IPCC_ALL_RX_BUF; + irqmask = irqmask & otherInstance->SR; + + while (irqmask != 0UL) /* if several bits are set, it loops to serve all of them */ + { + bit_pos = 1UL << (ch_count & CHANNEL_INDEX_MASK); + + if ((irqmask & bit_pos) != 0U) + { + /* mask the channel occupied interrupt */ + currentInstance->MR |= bit_pos; + if (hipcc->ChannelCallbackRx[ch_count] != NULL) + { + hipcc->ChannelCallbackRx[ch_count](hipcc, ch_count, IPCC_CHANNEL_DIR_RX); + } + irqmask = irqmask & ~(bit_pos); + } + ch_count++; + } +} + +/** + * @brief Rx occupied callback + * @param hipcc IPCC handle + * @param ChannelIndex Channel number + * This parameter can be one of the following values: + * @arg IPCC_CHANNEL_1: IPCC Channel 1 + * @arg IPCC_CHANNEL_2: IPCC Channel 2 + * @arg IPCC_CHANNEL_3: IPCC Channel 3 + * @arg IPCC_CHANNEL_4: IPCC Channel 4 + * @arg IPCC_CHANNEL_5: IPCC Channel 5 + * @arg IPCC_CHANNEL_6: IPCC Channel 6 + * @param ChannelDir Channel direction + */ +__weak void HAL_IPCC_RxCallback(IPCC_HandleTypeDef *hipcc, uint32_t ChannelIndex, IPCC_CHANNELDirTypeDef ChannelDir) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hipcc); + UNUSED(ChannelIndex); + UNUSED(ChannelDir); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IPCC_RxCallback can be implemented in the user file + */ +} + +/** + * @brief Tx free callback + * @param hipcc IPCC handle + * @param ChannelIndex Channel number + * This parameter can be one of the following values: + * @arg IPCC_CHANNEL_1: IPCC Channel 1 + * @arg IPCC_CHANNEL_2: IPCC Channel 2 + * @arg IPCC_CHANNEL_3: IPCC Channel 3 + * @arg IPCC_CHANNEL_4: IPCC Channel 4 + * @arg IPCC_CHANNEL_5: IPCC Channel 5 + * @arg IPCC_CHANNEL_6: IPCC Channel 6 + * @param ChannelDir Channel direction + */ +__weak void HAL_IPCC_TxCallback(IPCC_HandleTypeDef *hipcc, uint32_t ChannelIndex, IPCC_CHANNELDirTypeDef ChannelDir) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hipcc); + UNUSED(ChannelIndex); + UNUSED(ChannelDir); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IPCC_TxCallback can be implemented in the user file + */ +} + +/** + * @} + */ + +/** @addtogroup IPCC_Exported_Functions_Group3 + * @brief IPCC Peripheral State and Error functions + * +@verbatim + ============================================================================== + ##### Peripheral State and Error functions ##### + ============================================================================== + [..] + This subsection permit to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the IPCC handle state. + * @param hipcc IPCC handle + * @retval IPCC handle state + */ +HAL_IPCC_StateTypeDef HAL_IPCC_GetState(IPCC_HandleTypeDef const *const hipcc) +{ + return hipcc->State; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup IPCC_Private_Functions + * @{ + */ + +/** + * @brief Mask IPCC interrupts. + * @param ChannelIndex Channel number + * This parameter can be one of the following values: + * @arg IPCC_CHANNEL_1: IPCC Channel 1 + * @arg IPCC_CHANNEL_2: IPCC Channel 2 + * @arg IPCC_CHANNEL_3: IPCC Channel 3 + * @arg IPCC_CHANNEL_4: IPCC Channel 4 + * @arg IPCC_CHANNEL_5: IPCC Channel 5 + * @arg IPCC_CHANNEL_6: IPCC Channel 6 + * @param ChannelDir Channel direction + */ +void IPCC_MaskInterrupt(uint32_t ChannelIndex, IPCC_CHANNELDirTypeDef ChannelDir) +{ + IPCC_CommonTypeDef *currentInstance = IPCC_C1; + if (ChannelDir == IPCC_CHANNEL_DIR_TX) + { + /* Mask interrupt */ + currentInstance->MR |= (IPCC_MR_CH1FM_Msk << (ChannelIndex & CHANNEL_INDEX_MASK)); + } + else + { + /* Mask interrupt */ + currentInstance->MR |= (IPCC_MR_CH1OM_Msk << (ChannelIndex & CHANNEL_INDEX_MASK)); + } +} +/** + * @brief Unmask IPCC interrupts. + * @param ChannelIndex Channel number + * This parameter can be one of the following values: + * @arg IPCC_CHANNEL_1: IPCC Channel 1 + * @arg IPCC_CHANNEL_2: IPCC Channel 2 + * @arg IPCC_CHANNEL_3: IPCC Channel 3 + * @arg IPCC_CHANNEL_4: IPCC Channel 4 + * @arg IPCC_CHANNEL_5: IPCC Channel 5 + * @arg IPCC_CHANNEL_6: IPCC Channel 6 + * @param ChannelDir Channel direction + */ +void IPCC_UnmaskInterrupt(uint32_t ChannelIndex, IPCC_CHANNELDirTypeDef ChannelDir) +{ + IPCC_CommonTypeDef *currentInstance = IPCC_C1; + if (ChannelDir == IPCC_CHANNEL_DIR_TX) + { + /* Unmask interrupt */ + currentInstance->MR &= ~(IPCC_MR_CH1FM_Msk << (ChannelIndex & CHANNEL_INDEX_MASK)); + } + else + { + /* Unmask interrupt */ + currentInstance->MR &= ~(IPCC_MR_CH1OM_Msk << (ChannelIndex & CHANNEL_INDEX_MASK)); + } +} + +/** + * @brief Reset all callbacks of the handle to NULL. + * @param hipcc IPCC handle + */ +void IPCC_SetDefaultCallbacks(IPCC_HandleTypeDef *hipcc) +{ + uint32_t i; + /* Set all callbacks to default */ + for (i = 0; i < IPCC_CHANNEL_NUMBER; i++) + { + hipcc->ChannelCallbackRx[i] = HAL_IPCC_RxCallback; + hipcc->ChannelCallbackTx[i] = HAL_IPCC_TxCallback; + } +} + +/** + * @brief Reset IPCC register to default value for the concerned instance. + * @param Instance pointer to register + */ +void IPCC_Reset_Register(IPCC_CommonTypeDef *Instance) +{ + /* Disable RX and TX interrupts */ + Instance->CR = 0x00000000U; + + /* Mask RX and TX interrupts */ + Instance->MR = (IPCC_ALL_TX_BUF | IPCC_ALL_RX_BUF); + + /* Clear RX status */ + Instance->SCR = IPCC_ALL_RX_BUF; +} + +/** + * @} + */ + +#endif /* HAL_IPCC_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ +#endif /* IPCC */ + diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_pwr.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_pwr.c new file mode 100644 index 0000000..baeddf4 --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_pwr.c @@ -0,0 +1,742 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_pwr.c + * @author MCD Application Team + * @brief PWR HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Power Controller (PWR) peripheral: + * + Initialization/de-initialization functions + * + Peripheral Control functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @addtogroup PWR + * @{ + */ + +#ifdef HAL_PWR_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @addtogroup PWR_Private_Defines + * @{ + */ + +/** @defgroup PWR_Register_Reset_Values PWR Register Reset Values + * @{ + */ +/* Definitions of PWR registers reset value */ +#define PWR_CR1_RESET_VALUE (0x00000200U) +#define PWR_CR2_RESET_VALUE (0x00000000U) +#define PWR_CR3_RESET_VALUE (0x00008000U) +#define PWR_CR4_RESET_VALUE (0x00000000U) +#define PWR_CR5_RESET_VALUE (0x00004204U) +#define PWR_PUCRA_RESET_VALUE (0x00000000U) +#define PWR_PDCRA_RESET_VALUE (0x00000000U) +#define PWR_PUCRB_RESET_VALUE (0x00000000U) +#define PWR_PDCRB_RESET_VALUE (0x00000000U) +#define PWR_PUCRC_RESET_VALUE (0x00000000U) +#define PWR_PDCRC_RESET_VALUE (0x00000000U) +#define PWR_PUCRD_RESET_VALUE (0x00000000U) +#define PWR_PDCRD_RESET_VALUE (0x00000000U) +#define PWR_PUCRE_RESET_VALUE (0x00000000U) +#define PWR_PDCRE_RESET_VALUE (0x00000000U) +#define PWR_PUCRH_RESET_VALUE (0x00000000U) +#define PWR_PDCRH_RESET_VALUE (0x00000000U) +#define PWR_C2CR1_RESET_VALUE (0x00000000U) +#define PWR_C2CR3_RESET_VALUE (0x00008000U) +/** + * @} + */ + +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup PWR_Exported_Functions PWR Exported Functions + * @{ + */ + +/** @addtogroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and de-initialization functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] + +@endverbatim + * @{ + */ + +/** + * @brief Deinitialize the HAL PWR peripheral registers to their default reset values. + * @retval None + */ +void HAL_PWR_DeInit(void) +{ + /* Apply reset values to all PWR registers */ + /* Note: Update of each register required since PWR global reset is not */ + /* available at RCC level on this STM32 series. */ + LL_PWR_WriteReg(CR1, PWR_CR1_RESET_VALUE); + LL_PWR_WriteReg(CR2, PWR_CR2_RESET_VALUE); + LL_PWR_WriteReg(CR3, PWR_CR3_RESET_VALUE); + LL_PWR_WriteReg(CR4, PWR_CR4_RESET_VALUE); + LL_PWR_WriteReg(CR5, PWR_CR5_RESET_VALUE); + LL_PWR_WriteReg(PUCRA, PWR_PUCRA_RESET_VALUE); + LL_PWR_WriteReg(PDCRA, PWR_PDCRA_RESET_VALUE); + LL_PWR_WriteReg(PUCRB, PWR_PUCRB_RESET_VALUE); + LL_PWR_WriteReg(PDCRB, PWR_PDCRB_RESET_VALUE); + LL_PWR_WriteReg(PUCRC, PWR_PUCRC_RESET_VALUE); + LL_PWR_WriteReg(PDCRC, PWR_PDCRC_RESET_VALUE); +#if defined(GPIOD) + LL_PWR_WriteReg(PUCRD, PWR_PUCRD_RESET_VALUE); + LL_PWR_WriteReg(PDCRD, PWR_PDCRD_RESET_VALUE); +#endif /* GPIOD */ + LL_PWR_WriteReg(PUCRE, PWR_PUCRE_RESET_VALUE); + LL_PWR_WriteReg(PDCRE, PWR_PDCRE_RESET_VALUE); + LL_PWR_WriteReg(PUCRH, PWR_PUCRH_RESET_VALUE); + LL_PWR_WriteReg(PDCRH, PWR_PDCRH_RESET_VALUE); + LL_PWR_WriteReg(C2CR1, PWR_C2CR1_RESET_VALUE); + LL_PWR_WriteReg(C2CR3, PWR_C2CR3_RESET_VALUE); + + /* Clear all flags */ +#if defined(PWR_CR3_E802A) && defined(PWR_CR5_SMPSEN) + LL_PWR_WriteReg(SCR, + LL_PWR_SCR_CC2HF + | LL_PWR_SCR_CBLEAF + | LL_PWR_SCR_CCRPEF + | LL_PWR_SCR_C802AF + | LL_PWR_SCR_C802WUF + | LL_PWR_SCR_CBLEWUF + | LL_PWR_SCR_CBORHF + | LL_PWR_SCR_CSMPSFBF + | LL_PWR_SCR_CWUF); +#elif defined(PWR_CR3_E802A) + LL_PWR_WriteReg(SCR, + LL_PWR_SCR_CC2HF + | LL_PWR_SCR_CBLEAF + | LL_PWR_SCR_CCRPEF + | LL_PWR_SCR_C802AF + | LL_PWR_SCR_C802WUF + | LL_PWR_SCR_CBLEWUF + | LL_PWR_SCR_CWUF); +#elif defined(PWR_CR5_SMPSEN) + LL_PWR_WriteReg(SCR, + LL_PWR_SCR_CC2HF + | LL_PWR_SCR_CBLEAF + | LL_PWR_SCR_CCRPEF + | LL_PWR_SCR_CBLEWUF + | LL_PWR_SCR_CBORHF + | LL_PWR_SCR_CSMPSFBF + | LL_PWR_SCR_CWUF); +#else + LL_PWR_WriteReg(SCR, + LL_PWR_SCR_CC2HF + | LL_PWR_SCR_CBLEAF + | LL_PWR_SCR_CCRPEF + | LL_PWR_SCR_CBLEWUF + | LL_PWR_SCR_CWUF); +#endif + + LL_PWR_WriteReg(EXTSCR, + LL_PWR_EXTSCR_CCRPF + | LL_PWR_EXTSCR_C2CSSF + | LL_PWR_EXTSCR_C1CSSF + ); +} + + +/** + * @brief Enable access to the backup domain + * (RTC registers, RTC backup data registers). + * @note After reset, the backup domain is protected against + * possible unwanted write accesses. + * @note RTCSEL that sets the RTC clock source selection is in the RTC back-up domain. + * In order to set or modify the RTC clock, the backup domain access must be + * disabled. + * @note LSEON bit that switches on and off the LSE crystal belongs as well to the + * back-up domain. + * @retval None + */ +void HAL_PWR_EnableBkUpAccess(void) +{ + SET_BIT(PWR->CR1, PWR_CR1_DBP); +} + +/** + * @brief Disable access to the backup domain + * (RTC registers, RTC backup data registers). + * @retval None + */ +void HAL_PWR_DisableBkUpAccess(void) +{ + CLEAR_BIT(PWR->CR1, PWR_CR1_DBP); +} + +/** + * @} + */ + + +/** @addtogroup PWR_Exported_Functions_Group2 Peripheral Control functions + * @brief Low Power modes configuration functions + * +@verbatim + + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + + [..] + *** PVD configuration *** + ========================= + [..] + (+) The PVD is used to monitor the VDD power supply by comparing it to a + threshold selected by the PVD Level (PLS[2:0] bits in PWR_CR2 register). + (+) PVDO flag is available to indicate if VDD/VDDA is higher or lower + than the PVD threshold. This event is internally connected to the EXTI + line16 and can generate an interrupt if enabled. This is done through + __HAL_PVD_EXTI_ENABLE_IT() macro. + (+) The PVD is stopped in Standby mode. + + *** WakeUp pin configuration *** + ================================ + [..] + (+) WakeUp pins are used to wakeup the system from Standby mode or Shutdown mode. + The polarity of these pins can be set to configure event detection on high + level (rising edge) or low level (falling edge). + + *** Low Power modes configuration *** + ===================================== + [..] + The devices feature 8 low-power modes: + + (+) Low-power Run mode: core and peripherals are running, main regulator off, low power regulator on. + + (+) Sleep mode: Cortex-M4 core stopped, peripherals kept running, main and low power regulators on. + (+) Low-power Sleep mode: Cortex-M4 core stopped, peripherals kept running, main regulator off, low power regulator on. + + (+) Stop 0 mode: all clocks are stopped except LSI and LSE, main and low power regulators on. + (+) Stop 1 mode: all clocks are stopped except LSI and LSE, main regulator off, low power regulator on. + (+) Stop 2 mode: all clocks are stopped except LSI and LSE, main regulator off, low power regulator on, reduced set of waking up IPs compared to Stop 1 mode. + + (+) Standby mode with SRAM2a: all clocks are stopped except LSI and LSE, SRAM2a content preserved, main regulator off, low power regulator on. + Note: On devices STM32WB15xx, STM32WB10xx, STM32WB1Mxx retention is extended to SRAM1, SRAM2a, SRAM2b. + (+) Standby mode without SRAM2a: all clocks are stopped except LSI and LSE, main and low power regulators off. + + (+) Shutdown mode: all clocks are stopped except LSE, main and low power regulators off. + + + *** Low-power run mode *** + ========================== + [..] + (+) Entry: (from main run mode) + (++) set LPR bit with HAL_PWREx_EnableLowPowerRunMode() API after having decreased the system clock below 2 MHz. + (+) Exit: + (++) clear LPR bit then wait for REGLP bit to be reset with HAL_PWREx_DisableLowPowerRunMode() API. Only + then can the system clock frequency be increased above 2 MHz. + + *** Sleep mode / Low-power sleep mode *** + ========================================= + [..] + (+) Entry: + The Sleep mode / Low-power Sleep mode is entered thru HAL_PWR_EnterSLEEPMode() API + in specifying whether or not the regulator is forced to low-power mode and if exit is interrupt or event-triggered. + (++) PWR_MAINREGULATOR_ON: Sleep mode (regulator in main mode). + (++) PWR_LOWPOWERREGULATOR_ON: Low-power sleep (regulator in low power mode). + In the latter case, the system clock frequency must have been decreased below 2 MHz beforehand. + (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction + (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction + + (+) WFI Exit: + (++) Any peripheral interrupt acknowledged by the nested vectored interrupt + controller (NVIC) or any wake-up event. + + (+) WFE Exit: + (++) Any wake-up event such as an EXTI line configured in event mode. + + [..] When exiting the Low-power sleep mode by issuing an interrupt or a wakeup event, + the MCU is in Low-power Run mode. + + *** Stop 0, Stop 1 and Stop 2 modes *** + =============================== + [..] + (+) Entry: + The Stop 0, Stop 1 or Stop 2 modes are entered thru the following API's: + (++) HAL_PWREx_EnterSTOP0Mode() for mode 0, HAL_PWREx_EnterSTOP1Mode() for mode 1, HAL_PWREx_EnterSTOP2Mode() for mode 2 + or for porting reasons HAL_PWR_EnterSTOPMode(). + Note: Low power Stop2 mode is not available on devices STM32WB15xx, STM32WB10xx, STM32WB1Mxx. + + (+) Regulator setting (applicable to HAL_PWR_EnterSTOPMode() only): + (++) PWR_MAINREGULATOR_ON: Regulator in main mode (STOP0 mode) + (++) PWR_LOWPOWERREGULATOR_ON: Regulator in low-power mode (STOP1 mode) + (+) Exit (interrupt or event-triggered, specified when entering STOP mode): + (++) PWR_STOPENTRY_WFI: enter Stop mode with WFI instruction + (++) PWR_STOPENTRY_WFE: enter Stop mode with WFE instruction + (+) WFI Exit: + (++) Any EXTI Line (Internal or External) configured in Interrupt mode. + (++) Some specific communication peripherals (USART, LPUART, I2C) interrupts + when programmed in wakeup mode. + (+) WFE Exit: + (++) Any EXTI Line (Internal or External) configured in Event mode. + + [..] + When exiting Stop 0 and Stop 1 modes, the MCU is either in Run mode or in Low-power Run mode + depending on the LPR bit setting. + When exiting Stop 2 mode, the MCU is in Run mode. + + *** Standby mode *** + ==================== + [..] The Standby mode offers two options: + (+) option a) all clocks off except LSI and LSE, RRS bit set (keeps voltage regulator in low power mode). + SRAM and registers contents are lost except for the SRAM2 content, the RTC registers, RTC backup registers + and Standby circuitry. + (+) option b) all clocks off except LSI and LSE, RRS bit cleared (voltage regulator then disabled). + SRAM and register contents are lost except for the RTC registers, RTC backup registers + and Standby circuitry. + + (++) Entry: + (+++) The Standby mode is entered thru HAL_PWR_EnterSTANDBYMode() API. + SRAM1 and register contents are lost except for registers in the Backup domain and + Standby circuitry. SRAM2 content can be preserved if the bit RRS is set in PWR_CR3 register. + To enable this feature, the user can resort to HAL_PWREx_EnableBKRAMContentRetention() API + to set RRS bit. + (++) Exit: + (+++) WKUP pin rising edge, RTC alarm or wakeup, tamper event, time-stamp event, + external reset in NRST pin, IWDG reset. + [..] After waking up from Standby mode, program execution restarts in the same way as after a Reset. + + + *** Shutdown mode *** + ====================== + [..] + In Shutdown mode, + voltage regulator is disabled, all clocks are off except LSE, RRS bit is cleared. + SRAM and registers contents are lost except for backup domain registers. + (+) Entry: + The Shutdown mode is entered thru HAL_PWREx_EnterSHUTDOWNMode() API. + (+) Exit: + (++) WKUP pin rising edge, RTC alarm or wakeup, tamper event, time-stamp event, + external reset in NRST pin. + [..] After waking up from Shutdown mode, program execution restarts in the same way as after a Reset. + + + *** Auto-wakeup (AWU) from low-power mode *** + ============================================= + [..] + The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC + Wakeup event, a tamper event or a time-stamp event, without depending on + an external interrupt (Auto-wakeup mode). + + (+) RTC auto-wakeup (AWU) from the Stop, Standby and Shutdown modes + + + (++) To wake up from the Stop mode with an RTC alarm event, it is necessary to + configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function. + + (++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it + is necessary to configure the RTC to detect the tamper or time stamp event using the + HAL_RTCEx_SetTimeStamp_IT() or HAL_RTCEx_SetTamper_IT() functions. + + (++) To wake up from the Stop mode with an RTC WakeUp event, it is necessary to + configure the RTC to generate the RTC WakeUp event using the HAL_RTCEx_SetWakeUpTimer_IT() function. + +@endverbatim + * @{ + */ + +/** + * @brief Configure the voltage threshold detected by the Power Voltage Detector (PVD). + * @param sConfigPVD pointer to a PWR_PVDTypeDef structure that contains the PVD + * configuration information. + * @note Refer to the electrical characteristics of your device datasheet for + * more details about the voltage thresholds corresponding to each + * detection level. + * @note If "sConfigPVD->Mode" is set to PVD_MODE_IT, + * wake-up target is set by default to wake-up target CPU1. + * To select wake-up target to CPU2, additional configuration must be + * performed using macro "__HAL_PWR_PVD_EXTIC2_ENABLE_IT()" + * (and optionally, to select CPU2 only (not both CPU1 and CPU2): + * "__HAL_PWR_PVD_EXTI_DISABLE_IT()"). + * @retval None + */ +HAL_StatusTypeDef HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD) +{ + /* Check the parameters */ + assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel)); + assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode)); + + /* Set PLS bits according to PVDLevel value */ + MODIFY_REG(PWR->CR2, PWR_CR2_PLS, sConfigPVD->PVDLevel); + + /* Clear any previous config. Keep it clear if no event or IT mode is selected */ + + /* Note: On STM32WB series, power PVD event is not available on AIEC lines */ + /* (only interruption is available through AIEC line 16). */ + __HAL_PWR_PVD_EXTI_DISABLE_IT(); /*CPU1*/ + __HAL_PWR_PVD_EXTIC2_DISABLE_IT(); /*CPU2*/ + + __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE(); + __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE(); + + /* Configure interrupt mode */ + if ((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT) + { + /* Set CPU1 as wakeup target */ + __HAL_PWR_PVD_EXTI_ENABLE_IT(); + } + + /* Configure the edge */ + if ((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE) + { + __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE(); + } + + if ((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE) + { + __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE(); + } + + return HAL_OK; +} + +/** + * @brief Enables the Power Voltage Detector(PVD). + * @retval None + */ +void HAL_PWR_EnablePVD(void) +{ + /* Enable the power voltage detector */ + SET_BIT(PWR->CR2, PWR_CR2_PVDE); +} + +/** + * @brief Disables the Power Voltage Detector(PVD). + * @retval None + */ +void HAL_PWR_DisablePVD(void) +{ + /* Disable the power voltage detector */ + CLEAR_BIT(PWR->CR2, PWR_CR2_PVDE); +} + + +/** + * @brief Enable the WakeUp PINx functionality. + * @param WakeUpPinPolarity Specifies which Wake-Up pin to enable. + * This parameter can be one of the following legacy values which set the default polarity + * i.e. detection on high level (rising edge): + * @arg @ref PWR_WAKEUP_PIN1, PWR_WAKEUP_PIN2, PWR_WAKEUP_PIN3, PWR_WAKEUP_PIN4, PWR_WAKEUP_PIN5 + * + * or one of the following value where the user can explicitly specify the enabled pin and + * the chosen polarity: + * @arg @ref PWR_WAKEUP_PIN1_HIGH or PWR_WAKEUP_PIN1_LOW + * @arg @ref PWR_WAKEUP_PIN2_HIGH or PWR_WAKEUP_PIN2_LOW + * @arg @ref PWR_WAKEUP_PIN3_HIGH or PWR_WAKEUP_PIN3_LOW + * @arg @ref PWR_WAKEUP_PIN4_HIGH or PWR_WAKEUP_PIN4_LOW + * @arg @ref PWR_WAKEUP_PIN5_HIGH or PWR_WAKEUP_PIN5_LOW + * @note PWR_WAKEUP_PINx and PWR_WAKEUP_PINx_HIGH are equivalent. + * @retval None + */ +void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinPolarity) +{ + assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinPolarity)); + + /* Specifies the Wake-Up pin polarity for the event detection + (rising or falling edge) */ + MODIFY_REG(PWR->CR4, (PWR_CR3_EWUP & WakeUpPinPolarity), (WakeUpPinPolarity >> PWR_WUP_POLARITY_SHIFT)); + + /* Enable wake-up pin */ + SET_BIT(PWR->CR3, (PWR_CR3_EWUP & WakeUpPinPolarity)); +} + +/** + * @brief Disable the WakeUp PINx functionality. + * @param WakeUpPinx Specifies the Power Wake-Up pin to disable. + * This parameter can be one of the following values: + * @arg PWR_WAKEUP_PIN1: An event on PA0 PIN wakes-up the system from Standby mode. + * @arg PWR_WAKEUP_PIN2: An event on PC13 PIN wakes-up the system from Standby mode. + * @arg PWR_WAKEUP_PIN3: An event on PC12 PIN wakes-up the system from Standby mode. + * @arg PWR_WAKEUP_PIN4: An event on PA2 PIN wakes-up the system from Standby mode. + * @arg PWR_WAKEUP_PIN5: An event on PC5 PIN wakes-up the system from Standby mode. + * @retval None + */ +void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx) +{ + assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx)); + + CLEAR_BIT(PWR->CR3, (PWR_CR3_EWUP & WakeUpPinx)); +} + +/** + * @brief Enter Sleep or Low-power Sleep mode. + * @note In Sleep/Low-power Sleep mode, all I/O pins keep the same state as in Run mode. + * @param Regulator Specifies the regulator state in Sleep/Low-power Sleep mode. + * This parameter can be one of the following values: + * @arg @ref PWR_MAINREGULATOR_ON Sleep mode (regulator in main mode) + * @arg @ref PWR_LOWPOWERREGULATOR_ON Low-power Sleep mode (regulator in low-power mode) + * @note Low-power Sleep mode is entered from Low-power Run mode. Therefore, if not yet + * in Low-power Run mode before calling HAL_PWR_EnterSLEEPMode() with Regulator set + * to PWR_LOWPOWERREGULATOR_ON, the user can optionally configure the + * Flash in power-down mode in setting the SLEEP_PD bit in FLASH_ACR register. + * Additionally, the clock frequency must be reduced below 2 MHz. + * Setting SLEEP_PD in FLASH_ACR then appropriately reducing the clock frequency must + * be done before calling HAL_PWR_EnterSLEEPMode() API. + * @note When exiting Low-power Sleep mode, the MCU is in Low-power Run mode. To move in + * Run mode, the user must resort to HAL_PWREx_DisableLowPowerRunMode() API. + * @param SLEEPEntry Specifies if Sleep mode is entered with WFI or WFE instruction. + * This parameter can be one of the following values: + * @arg @ref PWR_SLEEPENTRY_WFI enter Sleep or Low-power Sleep mode with WFI instruction + * @arg @ref PWR_SLEEPENTRY_WFE enter Sleep or Low-power Sleep mode with WFE instruction + * @note When WFI entry is used, tick interrupt have to be disabled if not desired as + * the interrupt wake up source. + * @retval None + */ +void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry) +{ + /* Check the parameters */ + assert_param(IS_PWR_REGULATOR(Regulator)); + assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry)); + + /* Set Regulator parameter */ + if (Regulator == PWR_MAINREGULATOR_ON) + { + /* If in low-power run mode at this point, exit it */ + if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF)) + { + if (HAL_PWREx_DisableLowPowerRunMode() != HAL_OK) + { + return ; + } + } + /* Regulator now in main mode. */ + } + else + { + /* If in run mode, first move to low-power run mode. + The system clock frequency must be below 2 MHz at this point. */ + if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF) == RESET) + { + HAL_PWREx_EnableLowPowerRunMode(); + } + } + + /* Clear SLEEPDEEP bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); + + /* Select SLEEP mode entry -------------------------------------------------*/ + if (SLEEPEntry == PWR_SLEEPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI(); + } + else + { + /* Request Wait For Event */ + __SEV(); + __WFE(); + __WFE(); + } +} + + +/** + * @brief Enter Stop mode + * @note This API is named HAL_PWR_EnterSTOPMode to ensure compatibility with legacy code running + * on devices where only "Stop mode" is mentioned with main or low power regulator ON. + * @note In Stop mode, all I/O pins keep the same state as in Run mode. + * @note All clocks in the VCORE domain are stopped; the PLL, the MSI, + * the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability + * (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI + * after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated + * only to the peripheral requesting it. + * SRAM1, SRAM2 and register contents are preserved. + * The BOR is available. + * The voltage regulator can be configured either in normal (Stop 0) or low-power mode (Stop 1). + * @note When exiting Stop 0 or Stop 1 mode by issuing an interrupt or a wakeup event, + * the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register + * is set; the MSI oscillator is selected if STOPWUCK is cleared. + * @note When the voltage regulator operates in low power mode (Stop 1), an additional + * startup delay is incurred when waking up. + * By keeping the internal regulator ON during Stop mode (Stop 0), the consumption + * is higher although the startup time is reduced. + * @note Case of Stop0 mode with SMPS: Before entering Stop 0 mode with SMPS Step Down converter enabled, + * the HSI16 must be kept on by enabling HSI kernel clock (set HSIKERON register bit). + * @note According to system power policy, system entering in Stop mode + * is depending on other CPU power mode. + * @param Regulator Specifies the regulator state in Stop mode. + * This parameter can be one of the following values: + * @arg @ref PWR_MAINREGULATOR_ON Stop 0 mode (main regulator ON) + * @arg @ref PWR_LOWPOWERREGULATOR_ON Stop 1 mode (low power regulator ON) + * @param STOPEntry Specifies Stop 0, Stop 1 or Stop 2 mode is entered with WFI or WFE instruction. + * This parameter can be one of the following values: + * @arg @ref PWR_STOPENTRY_WFI Enter Stop 0 or Stop 1 mode with WFI instruction. + * @arg @ref PWR_STOPENTRY_WFE Enter Stop 0 or Stop 1 mode with WFE instruction. + * @retval None + */ +void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry) +{ + /* Check the parameters */ + assert_param(IS_PWR_REGULATOR(Regulator)); + + if (Regulator == PWR_LOWPOWERREGULATOR_ON) + { + HAL_PWREx_EnterSTOP1Mode(STOPEntry); + } + else + { + HAL_PWREx_EnterSTOP0Mode(STOPEntry); + } +} + + +/** + * @brief Enter Standby mode. + * @note In Standby mode, the PLL, the HSI, the MSI and the HSE oscillators are switched + * off. The voltage regulator is disabled, except when BKRAM content is preserved + * in which case the regulator is in low-power mode. + * SRAM and register contents are lost except for registers in the Backup domain and + * Standby circuitry. BKRAM content can be preserved if the bit RRS is set in PWR_CR3 register. + * To enable this feature, the user can resort to HAL_PWREx_EnableBKRAMContentRetention() API + * to set RRS bit. + * The BOR is available. + * @note The I/Os can be configured either with a pull-up or pull-down or can be kept in analog state. + * HAL_PWREx_EnableGPIOPullUp() and HAL_PWREx_EnableGPIOPullDown() respectively enable Pull Up and + * Pull Down state, HAL_PWREx_DisableGPIOPullUp() and HAL_PWREx_DisableGPIOPullDown() disable the + * same. + * These states are effective in Standby mode only if APC bit is set through + * HAL_PWREx_EnablePullUpPullDownConfig() API. + * @note According to system power policy, system entering in Standby mode + * is depending on other CPU power mode. + * @retval None + */ +void HAL_PWR_EnterSTANDBYMode(void) +{ + /* Set Stand-by mode */ + MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_STANDBY); + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); + + /* This option is used to ensure that store operations are completed */ +#if defined (__CC_ARM) + __force_stores(); +#endif /* __CC_ARM */ + + /* Request Wait For Interrupt */ + __WFI(); + + /* Following code is executed after wake up if system did not go to STANDBY + mode according to system power policy */ + + /* Reset SLEEPDEEP bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); +} + +/** + * @brief Indicate Sleep-On-Exit when returning from Handler mode to Thread mode. + * @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor + * re-enters SLEEP mode when an interruption handling is over. + * Setting this bit is useful when the processor is expected to run only on + * interruptions handling. + * @retval None + */ +void HAL_PWR_EnableSleepOnExit(void) +{ + /* Set SLEEPONEXIT bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk)); +} + +/** + * @brief Disable Sleep-On-Exit feature when returning from Handler mode to Thread mode. + * @note Clear SLEEPONEXIT bit of SCR register. When this bit is set, the processor + * re-enters SLEEP mode when an interruption handling is over. + * @retval None + */ +void HAL_PWR_DisableSleepOnExit(void) +{ + /* Clear SLEEPONEXIT bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk)); +} + + +/** + * @brief Enable CORTEX M4 SEVONPEND bit. + * @note Set SEVONPEND bit of SCR register. When this bit is set, this causes + * WFE to wake up when an interrupt moves from inactive to pended. + * @retval None + */ +void HAL_PWR_EnableSEVOnPend(void) +{ + /* Set SEVONPEND bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk)); +} + + +/** + * @brief Disable CORTEX M4 SEVONPEND bit. + * @note Clear SEVONPEND bit of SCR register. When this bit is set, this causes + * WFE to wake up when an interrupt moves from inactive to pended. + * @retval None + */ +void HAL_PWR_DisableSEVOnPend(void) +{ + /* Clear SEVONPEND bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk)); +} + + +/** + * @brief PWR PVD interrupt callback + * @retval None + */ +__weak void HAL_PWR_PVDCallback(void) +{ + /* NOTE : This function should not be modified; when the callback is needed, + the HAL_PWR_PVDCallback can be implemented in the user file + */ +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_PWR_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + + diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_pwr_ex.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_pwr_ex.c new file mode 100644 index 0000000..b39074d --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_pwr_ex.c @@ -0,0 +1,1368 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_pwr_ex.c + * @author MCD Application Team + * @brief Extended PWR HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Power Controller (PWR) peripheral: + * + Extended Initialization and de-initialization functions + * + Extended Peripheral Control functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @addtogroup PWREx + * @{ + */ + +#ifdef HAL_PWR_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup PWR_Extended_Private_Defines PWR Extended Private Defines + * @{ + */ +#define PWR_PORTE_AVAILABLE_PINS (PWR_GPIO_BIT_4 | PWR_GPIO_BIT_3 | PWR_GPIO_BIT_2 | PWR_GPIO_BIT_1 | PWR_GPIO_BIT_0) +#define PWR_PORTH_AVAILABLE_PINS (PWR_GPIO_BIT_3 | PWR_GPIO_BIT_1 | PWR_GPIO_BIT_0) + +/** @defgroup PWREx_TimeOut_Value PWR Extended Flag Setting Time Out Value + * @{ + */ +#define PWR_FLAG_SETTING_DELAY_US 50U /*!< Time out value for REGLPF and VOSF flags setting */ +/** + * @} + */ + +/** + * @} + */ + + + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup PWREx_Exported_Functions PWR Extended Exported Functions + * @{ + */ + +/** @addtogroup PWREx_Exported_Functions_Group1 Extended Peripheral Control functions + * @brief Extended Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Extended Peripheral Initialization and de-initialization functions ##### + =============================================================================== + [..] + +@endverbatim + * @{ + */ + + +#if defined(PWR_CR1_VOS) +/** + * @brief Return Voltage Scaling Range. + * @retval VOS bit field (PWR_REGULATOR_VOLTAGE_RANGE1 or PWR_REGULATOR_VOLTAGE_RANGE2) + */ +uint32_t HAL_PWREx_GetVoltageRange(void) +{ + return (PWR->CR1 & PWR_CR1_VOS); +} + +/** + * @brief Configure the main internal regulator output voltage. + * @param VoltageScaling specifies the regulator output voltage to achieve + * a tradeoff between performance and power consumption. + * This parameter can be one of the following values: + * @arg @ref PWR_REGULATOR_VOLTAGE_SCALE1 Regulator voltage output range 1 mode, + * typical output voltage at 1.2 V, + * system frequency up to 64 MHz. + * @arg @ref PWR_REGULATOR_VOLTAGE_SCALE2 Regulator voltage output range 2 mode, + * typical output voltage at 1.0 V, + * system frequency up to 16 MHz. + * @note When moving from Range 1 to Range 2, the system frequency must be decreased to + * a value below 16 MHz before calling HAL_PWREx_ControlVoltageScaling() API. + * When moving from Range 2 to Range 1, the system frequency can be increased to + * a value up to 64 MHz after calling HAL_PWREx_ControlVoltageScaling() API. + * @note When moving from Range 2 to Range 1, the API waits for VOSF flag to be + * cleared before returning the status. If the flag is not cleared within + * 50 microseconds, HAL_TIMEOUT status is reported. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling) +{ + uint32_t wait_loop_index; + + assert_param(IS_PWR_VOLTAGE_SCALING_RANGE(VoltageScaling)); + + /* If Set Range 1 */ + if (VoltageScaling == PWR_REGULATOR_VOLTAGE_SCALE1) + { + if (READ_BIT(PWR->CR1, PWR_CR1_VOS) != PWR_REGULATOR_VOLTAGE_SCALE1) + { + /* Set Range 1 */ + MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE1); + + /* Wait until VOSF is cleared */ + wait_loop_index = (PWR_FLAG_SETTING_DELAY_US * (SystemCoreClock / 1000000U)); + while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) && (wait_loop_index != 0U)) + { + wait_loop_index--; + } + if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) + { + return HAL_TIMEOUT; + } + } + } + else + { + if (READ_BIT(PWR->CR1, PWR_CR1_VOS) != PWR_REGULATOR_VOLTAGE_SCALE2) + { + /* Set Range 2 */ + MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE2); + /* No need to wait for VOSF to be cleared for this transition */ + } + } + + return HAL_OK; +} +#endif /* PWR_CR1_VOS */ + +/****************************************************************************/ + +/** + * @brief Enable battery charging. + * When VDD is present, charge the external battery on VBAT thru an internal resistor. + * @param ResistorSelection specifies the resistor impedance. + * This parameter can be one of the following values: + * @arg @ref PWR_BATTERY_CHARGING_RESISTOR_5 5 kOhms resistor + * @arg @ref PWR_BATTERY_CHARGING_RESISTOR_1_5 1.5 kOhms resistor + * @retval None + */ +void HAL_PWREx_EnableBatteryCharging(uint32_t ResistorSelection) +{ + assert_param(IS_PWR_BATTERY_RESISTOR_SELECT(ResistorSelection)); + + /* Specify resistor selection */ + MODIFY_REG(PWR->CR4, PWR_CR4_VBRS, ResistorSelection); + + /* Enable battery charging */ + SET_BIT(PWR->CR4, PWR_CR4_VBE); +} + +/** + * @brief Disable battery charging. + * @retval None + */ +void HAL_PWREx_DisableBatteryCharging(void) +{ + CLEAR_BIT(PWR->CR4, PWR_CR4_VBE); +} + +/****************************************************************************/ +#if defined(PWR_CR2_PVME1) +/** + * @brief Enable VDDUSB supply. + * @note Remove VDDUSB electrical and logical isolation, once VDDUSB supply is present. + * @retval None + */ +void HAL_PWREx_EnableVddUSB(void) +{ + SET_BIT(PWR->CR2, PWR_CR2_USV); +} + +/** + * @brief Disable VDDUSB supply. + * @retval None + */ +void HAL_PWREx_DisableVddUSB(void) +{ + CLEAR_BIT(PWR->CR2, PWR_CR2_USV); +} +#endif /* PWR_CR2_PVME1 */ + +/****************************************************************************/ + +/** + * @brief Enable Internal Wake-up Line. + * @retval None + */ +void HAL_PWREx_EnableInternalWakeUpLine(void) +{ + SET_BIT(PWR->CR3, PWR_CR3_EIWUL); +} + +/** + * @brief Disable Internal Wake-up Line. + * @retval None + */ +void HAL_PWREx_DisableInternalWakeUpLine(void) +{ + CLEAR_BIT(PWR->CR3, PWR_CR3_EIWUL); +} + +#if defined(PWR_CR5_SMPSEN) +/** + * @brief Enable BORH and SMPS step down converter forced in bypass mode + * interrupt for CPU1 + * @retval None + */ +void HAL_PWREx_EnableBORH_SMPSBypassIT(void) +{ + SET_BIT(PWR->CR3, PWR_CR3_EBORHSMPSFB); +} + +/** + * @brief Disable BORH and SMPS step down converter forced in bypass mode + * interrupt for CPU1 + * @retval None + */ +void HAL_PWREx_DisableBORH_SMPSBypassIT(void) +{ + CLEAR_BIT(PWR->CR3, PWR_CR3_EBORHSMPSFB); +} +#endif /* PWR_CR5_SMPSEN */ + +/** + * @brief Enable RF Phase interrupt. + * @retval None + */ +void HAL_PWREx_EnableRFPhaseIT(void) +{ + SET_BIT(PWR->CR3, PWR_CR3_ECRPE_Msk); +} + +/** + * @brief Disable RF Phase interrupt. + * @retval None + */ +void HAL_PWREx_DisableRFPhaseIT(void) +{ + CLEAR_BIT(PWR->CR3, PWR_CR3_ECRPE_Msk); +} + + +/** + * @brief Enable BLE Activity interrupt. + * @retval None + */ +void HAL_PWREx_EnableBLEActivityIT(void) +{ + SET_BIT(PWR->CR3, PWR_CR3_EBLEA); +} + +/** + * @brief Disable BLE Activity interrupt. + * @retval None + */ +void HAL_PWREx_DisableBLEActivityIT(void) +{ + CLEAR_BIT(PWR->CR3, PWR_CR3_EBLEA); +} + +#if defined(PWR_CR3_E802A) +/** + * @brief Enable 802.15.4 Activity interrupt. + * @retval None + */ +void HAL_PWREx_Enable802ActivityIT(void) +{ + SET_BIT(PWR->CR3, PWR_CR3_E802A); +} + +/** + * @brief Disable 802.15.4 Activity interrupt. + * @retval None + */ +void HAL_PWREx_Disable802ActivityIT(void) +{ + CLEAR_BIT(PWR->CR3, PWR_CR3_E802A); +} +#endif /* PWR_CR3_E802A */ + +/** + * @brief Enable CPU2 on-Hold interrupt. + * @retval None + */ +void HAL_PWREx_EnableHOLDC2IT(void) +{ + SET_BIT(PWR->CR3, PWR_CR3_EC2H); +} + +/** + * @brief Disable CPU2 on-Hold interrupt. + * @retval None + */ +void HAL_PWREx_DisableHOLDC2IT(void) +{ + CLEAR_BIT(PWR->CR3, PWR_CR3_EC2H); +} + +/****************************************************************************/ + +/** + * @brief Enable GPIO pull-up state in Standby and Shutdown modes. + * @note Set the relevant PUy bits of PWR_PUCRx register to configure the I/O in + * pull-up state in Standby and Shutdown modes. + * @note This state is effective in Standby and Shutdown modes only if APC bit + * is set through HAL_PWREx_EnablePullUpPullDownConfig() API. + * @note The configuration is lost when exiting the Shutdown mode due to the + * power-on reset, maintained when exiting the Standby mode. + * @note To avoid any conflict at Standby and Shutdown modes exits, the corresponding + * PDy bit of PWR_PDCRx register is cleared unless it is reserved. + * @note Even if a PUy bit to set is reserved, the other PUy bits entered as input + * parameter at the same time are set. + * @param GPIO Specify the IO port. This parameter can be PWR_GPIO_A, ..., PWR_GPIO_H + * to select the GPIO peripheral. + * @param GPIONumber Specify the I/O pins numbers. + * This parameter can be one of the following values: + * PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for PORTH where less + * I/O pins are available) or the logical OR of several of them to set + * several bits for a given port in a single API call. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullUp(uint32_t GPIO, uint32_t GPIONumber) +{ + HAL_StatusTypeDef status = HAL_OK; + + assert_param(IS_PWR_GPIO(GPIO)); + assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber)); + + switch (GPIO) + { + case PWR_GPIO_A: + SET_BIT(PWR->PUCRA, GPIONumber); + CLEAR_BIT(PWR->PDCRA, GPIONumber); + break; + case PWR_GPIO_B: + SET_BIT(PWR->PUCRB, GPIONumber); + CLEAR_BIT(PWR->PDCRB, GPIONumber); + break; + case PWR_GPIO_C: + SET_BIT(PWR->PUCRC, GPIONumber); + CLEAR_BIT(PWR->PDCRC, GPIONumber); + break; +#if defined(GPIOD) + case PWR_GPIO_D: + SET_BIT(PWR->PUCRD, GPIONumber); + CLEAR_BIT(PWR->PDCRD, GPIONumber); + break; +#endif /* GPIOD */ + case PWR_GPIO_E: + SET_BIT(PWR->PUCRE, (GPIONumber & PWR_PORTE_AVAILABLE_PINS)); + CLEAR_BIT(PWR->PDCRE, (GPIONumber & PWR_PORTE_AVAILABLE_PINS)); + break; + case PWR_GPIO_H: + SET_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS)); + CLEAR_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS)); + break; + default: + status = HAL_ERROR; + break; + } + + return status; +} + +/** + * @brief Disable GPIO pull-up state in Standby mode and Shutdown modes. + * @note Reset the relevant PUy bits of PWR_PUCRx register used to configure the I/O + * in pull-up state in Standby and Shutdown modes. + * @note Even if a PUy bit to reset is reserved, the other PUy bits entered as input + * parameter at the same time are reset. + * @param GPIO Specifies the IO port. This parameter can be PWR_GPIO_A, ..., PWR_GPIO_H + * to select the GPIO peripheral. + * @param GPIONumber Specify the I/O pins numbers. + * This parameter can be one of the following values: + * PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for PORTH where less + * I/O pins are available) or the logical OR of several of them to reset + * several bits for a given port in a single API call. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullUp(uint32_t GPIO, uint32_t GPIONumber) +{ + HAL_StatusTypeDef status = HAL_OK; + + assert_param(IS_PWR_GPIO(GPIO)); + assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber)); + + switch (GPIO) + { + case PWR_GPIO_A: + CLEAR_BIT(PWR->PUCRA, GPIONumber); + break; + case PWR_GPIO_B: + CLEAR_BIT(PWR->PUCRB, GPIONumber); + break; + case PWR_GPIO_C: + CLEAR_BIT(PWR->PUCRC, GPIONumber); + break; +#if defined(GPIOD) + case PWR_GPIO_D: + CLEAR_BIT(PWR->PUCRD, GPIONumber); + break; +#endif /* GPIOD */ + case PWR_GPIO_E: + CLEAR_BIT(PWR->PUCRE, (GPIONumber & PWR_PORTE_AVAILABLE_PINS)); + break; + case PWR_GPIO_H: + CLEAR_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS)); + break; + default: + status = HAL_ERROR; + break; + } + + return status; +} + + + +/** + * @brief Enable GPIO pull-down state in Standby and Shutdown modes. + * @note Set the relevant PDy bits of PWR_PDCRx register to configure the I/O in + * pull-down state in Standby and Shutdown modes. + * @note This state is effective in Standby and Shutdown modes only if APC bit + * is set through HAL_PWREx_EnablePullUpPullDownConfig() API. + * @note The configuration is lost when exiting the Shutdown mode due to the + * power-on reset, maintained when exiting the Standby mode. + * @note To avoid any conflict at Standby and Shutdown modes exits, the corresponding + * PUy bit of PWR_PUCRx register is cleared unless it is reserved. + * @note Even if a PDy bit to set is reserved, the other PDy bits entered as input + * parameter at the same time are set. + * @param GPIO Specify the IO port. This parameter can be PWR_GPIO_A..PWR_GPIO_H + * to select the GPIO peripheral. + * @param GPIONumber Specify the I/O pins numbers. + * This parameter can be one of the following values: + * PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for PORTH where less + * I/O pins are available) or the logical OR of several of them to set + * several bits for a given port in a single API call. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullDown(uint32_t GPIO, uint32_t GPIONumber) +{ + HAL_StatusTypeDef status = HAL_OK; + + assert_param(IS_PWR_GPIO(GPIO)); + assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber)); + + switch (GPIO) + { + case PWR_GPIO_A: + SET_BIT(PWR->PDCRA, GPIONumber); + CLEAR_BIT(PWR->PUCRA, GPIONumber); + break; + case PWR_GPIO_B: + SET_BIT(PWR->PDCRB, GPIONumber); + CLEAR_BIT(PWR->PUCRB, GPIONumber); + break; + case PWR_GPIO_C: + SET_BIT(PWR->PDCRC, GPIONumber); + CLEAR_BIT(PWR->PUCRC, GPIONumber); + break; +#if defined(GPIOD) + case PWR_GPIO_D: + SET_BIT(PWR->PDCRD, GPIONumber); + CLEAR_BIT(PWR->PUCRD, GPIONumber); + break; +#endif /* GPIOD */ + case PWR_GPIO_E: + SET_BIT(PWR->PDCRE, (GPIONumber & PWR_PORTE_AVAILABLE_PINS)); + CLEAR_BIT(PWR->PUCRE, (GPIONumber & PWR_PORTE_AVAILABLE_PINS)); + break; + case PWR_GPIO_H: + SET_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS)); + CLEAR_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS)); + break; + default: + status = HAL_ERROR; + break; + } + + return status; +} + +/** + * @brief Disable GPIO pull-down state in Standby and Shutdown modes. + * @note Reset the relevant PDy bits of PWR_PDCRx register used to configure the I/O + * in pull-down state in Standby and Shutdown modes. + * @note Even if a PDy bit to reset is reserved, the other PDy bits entered as input + * parameter at the same time are reset. + * @param GPIO Specifies the IO port. This parameter can be PWR_GPIO_A..PWR_GPIO_H + * to select the GPIO peripheral. + * @param GPIONumber Specify the I/O pins numbers. + * This parameter can be one of the following values: + * PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for PORTH where less + * I/O pins are available) or the logical OR of several of them to reset + * several bits for a given port in a single API call. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullDown(uint32_t GPIO, uint32_t GPIONumber) +{ + HAL_StatusTypeDef status = HAL_OK; + + assert_param(IS_PWR_GPIO(GPIO)); + assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber)); + + switch (GPIO) + { + case PWR_GPIO_A: + CLEAR_BIT(PWR->PDCRA, GPIONumber); + break; + case PWR_GPIO_B: + CLEAR_BIT(PWR->PDCRB, GPIONumber); + break; + case PWR_GPIO_C: + CLEAR_BIT(PWR->PDCRC, GPIONumber); + break; +#if defined(GPIOD) + case PWR_GPIO_D: + CLEAR_BIT(PWR->PDCRD, GPIONumber); + break; +#endif /* GPIOD */ + case PWR_GPIO_E: + CLEAR_BIT(PWR->PDCRE, (GPIONumber & PWR_PORTE_AVAILABLE_PINS)); + break; + case PWR_GPIO_H: + CLEAR_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS)); + break; + default: + status = HAL_ERROR; + break; + } + + return status; +} + +/** + * @brief Enable pull-up and pull-down configuration. + * @note When APC bit is set, the I/O pull-up and pull-down configurations defined in + * PWR_PUCRx and PWR_PDCRx registers are applied in Standby and Shutdown modes. + * @note Pull-up set by PUy bit of PWR_PUCRx register is not activated if the corresponding + * PDy bit of PWR_PDCRx register is also set (pull-down configuration priority is higher). + * HAL_PWREx_EnableGPIOPullUp() and HAL_PWREx_EnableGPIOPullDown() API's ensure there + * is no conflict when setting PUy or PDy bit. + * @retval None + */ +void HAL_PWREx_EnablePullUpPullDownConfig(void) +{ + SET_BIT(PWR->CR3, PWR_CR3_APC); +} + +/** + * @brief Disable pull-up and pull-down configuration. + * @note When APC bit is cleared, the I/O pull-up and pull-down configurations defined in + * PWR_PUCRx and PWR_PDCRx registers are not applied in Standby and Shutdown modes. + * @retval None + */ +void HAL_PWREx_DisablePullUpPullDownConfig(void) +{ + CLEAR_BIT(PWR->CR3, PWR_CR3_APC); +} + +/****************************************************************************/ + +#if defined(PWR_CR5_SMPSEN) +/** + * @brief Set BOR configuration + * @param BORConfiguration This parameter can be one of the following values: + * @arg @ref PWR_BOR_SYSTEM_RESET + * @arg @ref PWR_BOR_SMPS_FORCE_BYPASS + */ +void HAL_PWREx_SetBORConfig(uint32_t BORConfiguration) +{ + LL_PWR_SetBORConfig(BORConfiguration); +} + +/** + * @brief Get BOR configuration + * @retval Returned value can be one of the following values: + * @arg @ref PWR_BOR_SYSTEM_RESET + * @arg @ref PWR_BOR_SMPS_FORCE_BYPASS + */ +uint32_t HAL_PWREx_GetBORConfig(void) +{ + return LL_PWR_GetBORConfig(); +} +#endif /* PWR_CR5_SMPSEN */ + +/****************************************************************************/ +/** + * @brief Hold the CPU and their allocated peripherals after reset or wakeup from stop or standby. + * @param CPU: Specifies the core to be held. + * This parameter can be one of the following values: + * @arg PWR_CORE_CPU2: Hold CPU2 and set CPU1 as master. + * @note Hold CPU2 with CPU1 as master by default. + * @retval None + */ +void HAL_PWREx_HoldCore(uint32_t CPU) +{ + /* Check the parameters */ + assert_param(IS_PWR_CORE_HOLD_RELEASE(CPU)); + + LL_PWR_DisableBootC2(); +} + +/** + * @brief Release Cortex CPU2 and allocated peripherals after reset or wakeup from stop or standby. + * @param CPU: Specifies the core to be released. + * This parameter can be one of the following values: + * @arg PWR_CORE_CPU2: Release the CPU2 from holding. + * @retval None + */ +void HAL_PWREx_ReleaseCore(uint32_t CPU) +{ + /* Check the parameters */ + assert_param(IS_PWR_CORE_HOLD_RELEASE(CPU)); + + LL_PWR_EnableBootC2(); +} + +/****************************************************************************/ +/** + * @brief Enable SRAM2a content retention in Standby mode. + * @note When RRS bit is set, SRAM2a is powered by the low-power regulator in + * Standby mode and its content is kept. + * @note On devices STM32WB15xx, STM32WB10xx, STM32WB1Mxx retention is extended + * to SRAM1, SRAM2a and SRAM2b. + * @retval None + */ +void HAL_PWREx_EnableSRAMRetention(void) +{ + LL_PWR_EnableSRAM2Retention(); +} + +/** + * @brief Disable SRAM2a content retention in Standby mode. + * @note When RRS bit is reset, SRAM2a is powered off in Standby mode + * and its content is lost. + * @note On devices STM32WB15xx, STM32WB10xx, STM32WB1Mxx retention is extended + * to SRAM1, SRAM2a and SRAM2b. + * @retval None + */ +void HAL_PWREx_DisableSRAMRetention(void) +{ + LL_PWR_DisableSRAM2Retention(); +} + +/****************************************************************************/ +/** + * @brief Enable Flash Power Down. + * @note This API allows to enable flash power down capabilities in low power + * run and low power sleep modes. + * @param PowerMode this can be a combination of following values: + * @arg @ref PWR_FLASHPD_LPRUN + * @arg @ref PWR_FLASHPD_LPSLEEP + * @retval None + */ +void HAL_PWREx_EnableFlashPowerDown(uint32_t PowerMode) +{ + assert_param(IS_PWR_FLASH_POWERDOWN(PowerMode)); + + if ((PowerMode & PWR_FLASHPD_LPRUN) != 0U) + { + /* Unlock bit FPDR */ + WRITE_REG(PWR->CR1, 0x0000C1B0UL); + } + + /* Set flash power down mode */ + SET_BIT(PWR->CR1, PowerMode); +} + +/** + * @brief Disable Flash Power Down. + * @note This API allows to disable flash power down capabilities in low power + * run and low power sleep modes. + * @param PowerMode this can be a combination of following values: + * @arg @ref PWR_FLASHPD_LPRUN + * @arg @ref PWR_FLASHPD_LPSLEEP + * @retval None + */ +void HAL_PWREx_DisableFlashPowerDown(uint32_t PowerMode) +{ + assert_param(IS_PWR_FLASH_POWERDOWN(PowerMode)); + + /* Set flash power down mode */ + CLEAR_BIT(PWR->CR1, PowerMode); +} + +/****************************************************************************/ +#if defined(PWR_CR2_PVME1) +/** + * @brief Enable the Power Voltage Monitoring 1: VDDUSB versus 1.2V. + * @retval None + */ +void HAL_PWREx_EnablePVM1(void) +{ + SET_BIT(PWR->CR2, PWR_PVM_1); +} + +/** + * @brief Disable the Power Voltage Monitoring 1: VDDUSB versus 1.2V. + * @retval None + */ +void HAL_PWREx_DisablePVM1(void) +{ + CLEAR_BIT(PWR->CR2, PWR_PVM_1); +} +#endif /* PWR_CR2_PVME1 */ + +/** + * @brief Enable the Power Voltage Monitoring 3: VDDA versus 1.62V. + * @retval None + */ +void HAL_PWREx_EnablePVM3(void) +{ + SET_BIT(PWR->CR2, PWR_PVM_3); +} + +/** + * @brief Disable the Power Voltage Monitoring 3: VDDA versus 1.62V. + * @retval None + */ +void HAL_PWREx_DisablePVM3(void) +{ + CLEAR_BIT(PWR->CR2, PWR_PVM_3); +} + + + + +/** + * @brief Configure the Peripheral Voltage Monitoring (PVM). + * @param sConfigPVM pointer to a PWR_PVMTypeDef structure that contains the + * PVM configuration information. + * @note The API configures a single PVM according to the information contained + * in the input structure. To configure several PVMs, the API must be singly + * called for each PVM used. + * @note Refer to the electrical characteristics of your device datasheet for + * more details about the voltage thresholds corresponding to each + * detection level and to each monitored supply. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PWREx_ConfigPVM(PWR_PVMTypeDef *sConfigPVM) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_PWR_PVM_TYPE(sConfigPVM->PVMType)); + assert_param(IS_PWR_PVM_MODE(sConfigPVM->Mode)); + + /* Configure EXTI 31 and 33 interrupts if so required: + scan thru PVMType to detect which PVMx is set and + configure the corresponding EXTI line accordingly. */ + switch (sConfigPVM->PVMType) + { +#if defined(PWR_CR2_PVME1) + case PWR_PVM_1: + /* Clear any previous config. Keep it clear if no event or IT mode is selected */ + __HAL_PWR_PVM1_EXTI_DISABLE_EVENT(); + __HAL_PWR_PVM1_EXTI_DISABLE_IT(); + __HAL_PWR_PVM1_EXTI_DISABLE_FALLING_EDGE(); + __HAL_PWR_PVM1_EXTI_DISABLE_RISING_EDGE(); + + /* Configure interrupt mode */ + if ((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT) + { + __HAL_PWR_PVM1_EXTI_ENABLE_IT(); + } + + /* Configure event mode */ + if ((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT) + { + __HAL_PWR_PVM1_EXTI_ENABLE_EVENT(); + } + + /* Configure the edge */ + if ((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE) + { + __HAL_PWR_PVM1_EXTI_ENABLE_RISING_EDGE(); + } + + if ((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE) + { + __HAL_PWR_PVM1_EXTI_ENABLE_FALLING_EDGE(); + } + break; +#endif /* PWR_CR2_PVME1 */ + + case PWR_PVM_3: + /* Clear any previous config. Keep it clear if no event or IT mode is selected */ + __HAL_PWR_PVM3_EXTI_DISABLE_EVENT(); + __HAL_PWR_PVM3_EXTI_DISABLE_IT(); + __HAL_PWR_PVM3_EXTI_DISABLE_FALLING_EDGE(); + __HAL_PWR_PVM3_EXTI_DISABLE_RISING_EDGE(); + + /* Configure interrupt mode */ + if ((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT) + { + __HAL_PWR_PVM3_EXTI_ENABLE_IT(); + } + + /* Configure event mode */ + if ((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT) + { + __HAL_PWR_PVM3_EXTI_ENABLE_EVENT(); + } + + /* Configure the edge */ + if ((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE) + { + __HAL_PWR_PVM3_EXTI_ENABLE_RISING_EDGE(); + } + + if ((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE) + { + __HAL_PWR_PVM3_EXTI_ENABLE_FALLING_EDGE(); + } + break; + + default: + status = HAL_ERROR; + break; + + } + + return status; +} + +#if defined(PWR_CR5_SMPSEN) +/** + * @brief Configure the SMPS step down converter. + * @note SMPS output voltage is calibrated in production, + * calibration parameters are applied to the voltage level parameter + * to reach the requested voltage value. + * @param sConfigSMPS pointer to a PWR_SMPSTypeDef structure that contains the + * SMPS configuration information. + * @note To set and enable SMPS operating mode, refer to function + * "HAL_PWREx_SMPS_SetMode()". + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PWREx_ConfigSMPS(PWR_SMPSTypeDef *sConfigSMPS) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_PWR_SMPS_STARTUP_CURRENT(sConfigSMPS->StartupCurrent)); + assert_param(IS_PWR_SMPS_OUTPUT_VOLTAGE(sConfigSMPS->OutputVoltage)); + + __IO const uint32_t OutputVoltageLevel_calibration = (((*SMPS_VOLTAGE_CAL_ADDR) & SMPS_VOLTAGE_CAL) >> SMPS_VOLTAGE_CAL_POS); /* SMPS output voltage level calibrated in production */ + int32_t TrimmingSteps; /* Trimming steps between theoretical output voltage and calibrated output voltage */ + int32_t OutputVoltageLevelTrimmed; /* SMPS output voltage level after calibration: trimming value added to required level */ + + if (OutputVoltageLevel_calibration == 0UL) + { + /* Device with SMPS output voltage not calibrated in production: Apply output voltage value directly */ + + /* Update register */ + MODIFY_REG(PWR->CR5, PWR_CR5_SMPSVOS, (sConfigSMPS->StartupCurrent | sConfigSMPS->OutputVoltage)); + } + else + { + /* Device with SMPS output voltage calibrated in production: Apply output voltage value after correction by calibration value */ + + TrimmingSteps = ((int32_t)OutputVoltageLevel_calibration - (int32_t)(LL_PWR_SMPS_OUTPUT_VOLTAGE_1V50 >> PWR_CR5_SMPSVOS_Pos)); + OutputVoltageLevelTrimmed = ((int32_t)((uint32_t)(sConfigSMPS->OutputVoltage >> PWR_CR5_SMPSVOS_Pos)) + (int32_t)TrimmingSteps); + + /* Clamp value to voltage trimming bitfield range */ + if (OutputVoltageLevelTrimmed < 0) + { + OutputVoltageLevelTrimmed = 0; + status = HAL_ERROR; + } + else + { + if (OutputVoltageLevelTrimmed > (int32_t)PWR_CR5_SMPSVOS) + { + OutputVoltageLevelTrimmed = (int32_t)PWR_CR5_SMPSVOS; + status = HAL_ERROR; + } + } + + /* Update register */ + MODIFY_REG(PWR->CR5, (PWR_CR5_SMPSSC | PWR_CR5_SMPSVOS), + (sConfigSMPS->StartupCurrent | ((uint32_t) OutputVoltageLevelTrimmed))); + } + + return status; +} + +/** + * @brief Set SMPS operating mode. + * @param OperatingMode This parameter can be one of the following values: + * @arg @ref PWR_SMPS_BYPASS + * @arg @ref PWR_SMPS_STEP_DOWN (1) + * + * (1) SMPS operating mode step down or open depends on system low-power mode: + * - step down mode if system low power mode is run, LP run or stop, + * - open mode if system low power mode is Stop1, Stop2, Standby or Shutdown + * @retval None + */ +void HAL_PWREx_SMPS_SetMode(uint32_t OperatingMode) +{ + MODIFY_REG(PWR->CR5, PWR_CR5_SMPSEN, (OperatingMode & PWR_SR2_SMPSF) << (PWR_CR5_SMPSEN_Pos - PWR_SR2_SMPSF_Pos)); +} + +/** + * @brief Get SMPS effective operating mode + * @note SMPS operating mode can be changed by hardware, therefore + * requested operating mode can differ from effective low power mode. + * - dependency on system low-power mode: + * - step down mode if system low power mode is run, LP run or stop, + * - open mode if system low power mode is Stop1, Stop2, Standby or Shutdown + * - dependency on BOR level: + * - bypass mode if supply voltage drops below BOR level + * @note This functions check flags of SMPS operating modes step down + * and bypass. If the SMPS is not among these 2 operating modes, + * then it can be in mode off or open. + * @retval Returned value can be one of the following values: + * @arg @ref PWR_SMPS_BYPASS + * @arg @ref PWR_SMPS_STEP_DOWN (1) + * + * (1) SMPS operating mode step down or open depends on system low-power mode: + * - step down mode if system low power mode is run, LP run or stop, + * - open mode if system low power mode is Stop1, Stop2, Standby or Shutdown + */ +uint32_t HAL_PWREx_SMPS_GetEffectiveMode(void) +{ + return (uint32_t)(READ_BIT(PWR->SR2, (PWR_SR2_SMPSF | PWR_SR2_SMPSBF))); +} +#endif /* PWR_CR5_SMPSEN */ + +/****************************************************************************/ + +/** + * @brief Enable the WakeUp PINx functionality. + * @param WakeUpPinPolarity Specifies which Wake-Up pin to enable. + * This parameter can be one of the following legacy values which set the default polarity + * i.e. detection on high level (rising edge): + * @arg @ref PWR_WAKEUP_PIN1, PWR_WAKEUP_PIN2, PWR_WAKEUP_PIN3, PWR_WAKEUP_PIN4, PWR_WAKEUP_PIN5 + * + * or one of the following value where the user can explicitly specify the enabled pin and + * the chosen polarity: + * @arg @ref PWR_WAKEUP_PIN1_HIGH or PWR_WAKEUP_PIN1_LOW + * @arg @ref PWR_WAKEUP_PIN2_HIGH or PWR_WAKEUP_PIN2_LOW + * @arg @ref PWR_WAKEUP_PIN3_HIGH or PWR_WAKEUP_PIN3_LOW + * @arg @ref PWR_WAKEUP_PIN4_HIGH or PWR_WAKEUP_PIN4_LOW + * @arg @ref PWR_WAKEUP_PIN5_HIGH or PWR_WAKEUP_PIN5_LOW + * @param wakeupTarget Specifies the wake-up target + * @arg @ref PWR_CORE_CPU1 + * @arg @ref PWR_CORE_CPU2 + * @note PWR_WAKEUP_PINx and PWR_WAKEUP_PINx_HIGH are equivalent. + * @retval None + */ +void HAL_PWREx_EnableWakeUpPin(uint32_t WakeUpPinPolarity, uint32_t wakeupTarget) +{ + assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinPolarity)); + + /* Specifies the Wake-Up pin polarity for the event detection + (rising or falling edge) */ + MODIFY_REG(PWR->CR4, (PWR_C2CR3_EWUP & WakeUpPinPolarity), (WakeUpPinPolarity >> PWR_WUP_POLARITY_SHIFT)); + + /* Enable wake-up pin */ + if (PWR_CORE_CPU2 == wakeupTarget) + { + SET_BIT(PWR->C2CR3, (PWR_C2CR3_EWUP & WakeUpPinPolarity)); + } + else + { + SET_BIT(PWR->CR3, (PWR_CR3_EWUP & WakeUpPinPolarity)); + } +} + +/** + * @brief Get the Wake-Up pin flag. + * @param WakeUpFlag specifies the Wake-Up PIN flag to check. + * This parameter can be one of the following values: + * @arg PWR_FLAG_WUF1: A wakeup event was received from PA0. + * @arg PWR_FLAG_WUF2: A wakeup event was received from PC13. + * @arg PWR_FLAG_WUF3: A wakeup event was received from PC12. + * @arg PWR_FLAG_WUF4: A wakeup event was received from PA2. + * @arg PWR_FLAG_WUF5: A wakeup event was received from PC5. + * @retval The Wake-Up pin flag. + */ +uint32_t HAL_PWREx_GetWakeupFlag(uint32_t WakeUpFlag) +{ + return (PWR->SR1 & (1UL << ((WakeUpFlag) & 31U))); +} + +/** + * @brief Clear the Wake-Up pin flag. + * @param WakeUpFlag specifies the Wake-Up PIN flag to clear. + * This parameter can be one of the following values: + * @arg PWR_FLAG_WUF1: A wakeup event was received from PA0. + * @arg PWR_FLAG_WUF2: A wakeup event was received from PC13. + * @arg PWR_FLAG_WUF3: A wakeup event was received from PC12. + * @arg PWR_FLAG_WUF4: A wakeup event was received from PA2. + * @arg PWR_FLAG_WUF5: A wakeup event was received from PC5. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_PWREx_ClearWakeupFlag(uint32_t WakeUpFlag) +{ + PWR->SCR = (1UL << ((WakeUpFlag) & 31U)); + + if ((PWR->SR1 & (1UL << ((WakeUpFlag) & 31U))) != 0U) + { + return HAL_ERROR; + } + return HAL_OK; +} + +/****************************************************************************/ + +/** + * @brief Enter Low-power Run mode + * @note In Low-power Run mode, all I/O pins keep the same state as in Run mode. + * @note When Regulator is set to PWR_LOWPOWERREGULATOR_ON, the user can optionally configure the + * Flash in power-down mode in setting the RUN_PD bit in FLASH_ACR register. + * Additionally, the clock frequency must be reduced below 2 MHz. + * Setting RUN_PD in FLASH_ACR then appropriately reducing the clock frequency must + * be done before calling HAL_PWREx_EnableLowPowerRunMode() API. + * @retval None + */ +void HAL_PWREx_EnableLowPowerRunMode(void) +{ + /* Set Regulator parameter */ + SET_BIT(PWR->CR1, PWR_CR1_LPR); +} + + +/** + * @brief Exit Low-power Run mode. + * @note Before HAL_PWREx_DisableLowPowerRunMode() completion, the function checks that + * REGLPF has been properly reset (otherwise, HAL_PWREx_DisableLowPowerRunMode + * returns HAL_TIMEOUT status). The system clock frequency can then be + * increased above 2 MHz. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_PWREx_DisableLowPowerRunMode(void) +{ + uint32_t wait_loop_index; + + /* Clear LPR bit */ + CLEAR_BIT(PWR->CR1, PWR_CR1_LPR); + + /* Wait until REGLPF is reset */ + wait_loop_index = (PWR_FLAG_SETTING_DELAY_US * (SystemCoreClock / 1000000U)); + while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF)) && (wait_loop_index != 0U)) + { + wait_loop_index--; + } + if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF)) + { + return HAL_TIMEOUT; + } + + return HAL_OK; +} + +/****************************************************************************/ + +/** + * @brief Enter Stop 0 mode. + * @note In Stop 0 mode, main and low voltage regulators are ON. + * @note In Stop 0 mode, all I/O pins keep the same state as in Run mode. + * @note All clocks in the VCORE domain are stopped; the PLL, the MSI, + * the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability + * (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI + * after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated + * only to the peripheral requesting it. + * SRAM1, SRAM2 and register contents are preserved. + * The BOR is available. + * @note When exiting Stop 0 mode by issuing an interrupt or a wakeup event, + * the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register + * is set; the MSI oscillator is selected if STOPWUCK is cleared. + * @note By keeping the internal regulator ON during Stop 0 mode, the consumption + * is higher although the startup time is reduced. + * @note Case of Stop0 mode with SMPS: Before entering Stop 0 mode with SMPS Step Down converter enabled, + * the HSI16 must be kept on by enabling HSI kernel clock (set HSIKERON register bit). + * @note According to system power policy, system entering in Stop mode + * is depending on other CPU power mode. + * @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction. + * This parameter can be one of the following values: + * @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction + * @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction + * @retval None + */ +void HAL_PWREx_EnterSTOP0Mode(uint8_t STOPEntry) +{ + /* Check the parameters */ + assert_param(IS_PWR_STOP_ENTRY(STOPEntry)); + + /* Stop 0 mode with Main Regulator */ + MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_STOP0); + + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); + + /* Select Stop mode entry --------------------------------------------------*/ + if (STOPEntry == PWR_STOPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI(); + } + else + { + /* Request Wait For Event */ + __SEV(); + __WFE(); + __WFE(); + } + + /* Reset SLEEPDEEP bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); +} + +/** + * @brief Enter Stop 1 mode. + * @note In Stop 1 mode, only low power voltage regulator is ON. + * @note In Stop 1 mode, all I/O pins keep the same state as in Run mode. + * @note All clocks in the VCORE domain are stopped; the PLL, the MSI, + * the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability + * (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI + * after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated + * only to the peripheral requesting it. + * SRAM1, SRAM2 and register contents are preserved. + * The BOR is available. + * @note When exiting Stop 1 mode by issuing an interrupt or a wakeup event, + * the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register + * is set; the MSI oscillator is selected if STOPWUCK is cleared. + * @note Due to low power mode, an additional startup delay is incurred when waking up from Stop 1 mode. + * @note According to system power policy, system entering in Stop mode + * is depending on other CPU power mode. + * @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction. + * This parameter can be one of the following values: + * @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction + * @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction + * @retval None + */ +void HAL_PWREx_EnterSTOP1Mode(uint8_t STOPEntry) +{ + /* Check the parameters */ + assert_param(IS_PWR_STOP_ENTRY(STOPEntry)); + + /* Stop 1 mode with Low-Power Regulator */ + MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_STOP1); + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); + + /* Select Stop mode entry --------------------------------------------------*/ + if (STOPEntry == PWR_STOPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI(); + } + else + { + /* Request Wait For Event */ + __SEV(); + __WFE(); + __WFE(); + } + + /* Reset SLEEPDEEP bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); +} + +#if defined(PWR_SUPPORT_STOP2) +/** + * @brief Enter Stop 2 mode. + * @note In Stop 2 mode, only low power voltage regulator is ON. + * @note In Stop 2 mode, all I/O pins keep the same state as in Run mode. + * @note All clocks in the VCORE domain are stopped, the PLL, the MSI, + * the HSI and the HSE oscillators are disabled. Some peripherals with wakeup capability + * (LCD, LPTIM1, I2C3 and LPUART) can switch on the HSI to receive a frame, and switch off the HSI after + * receiving the frame if it is not a wakeup frame. In this case the HSI clock is propagated only + * to the peripheral requesting it. + * SRAM1, SRAM2 and register contents are preserved. + * The BOR is available. + * The voltage regulator is set in low-power mode but LPR bit must be cleared to enter stop 2 mode. + * Otherwise, Stop 1 mode is entered. + * @note When exiting Stop 2 mode by issuing an interrupt or a wakeup event, + * the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register + * is set; the MSI oscillator is selected if STOPWUCK is cleared. + * @note Case of Stop2 mode and debugger probe attached: a workaround should be applied. + * Issue specified in "ES0394 - STM32WB55Cx/Rx/Vx device errata": + * 2.2.9 Incomplete Stop 2 mode entry after a wakeup from debug upon EXTI line 48 event + * "With the JTAG debugger enabled on GPIO pins and after a wakeup from debug triggered by an event on EXTI + * line 48 (CDBGPWRUPREQ), the device may enter in a state in which attempts to enter Stop 2 mode are not fully + * effective ..." + * Workaround implementation example using LL driver: + * LL_EXTI_DisableIT_32_63(LL_EXTI_LINE_48); + * LL_C2_EXTI_DisableIT_32_63(LL_EXTI_LINE_48); + * @note According to system power policy, system entering in Stop mode + * is depending on other CPU power mode. + * @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction. + * This parameter can be one of the following values: + * @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction + * @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction + * @retval None + */ +void HAL_PWREx_EnterSTOP2Mode(uint8_t STOPEntry) +{ + /* Check the parameter */ + assert_param(IS_PWR_STOP_ENTRY(STOPEntry)); + + /* Set Stop mode 2 */ + MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_STOP2); + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); + + /* Select Stop mode entry --------------------------------------------------*/ + if (STOPEntry == PWR_STOPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI(); + } + else + { + /* Request Wait For Event */ + __SEV(); + __WFE(); + __WFE(); + } + + /* Reset SLEEPDEEP bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); +} +#endif /* PWR_SUPPORT_STOP2 */ + +/** + * @brief Enter Shutdown mode. + * @note In Shutdown mode, the PLL, the HSI, the MSI, the LSI and the HSE oscillators are switched + * off. The voltage regulator is disabled and Vcore domain is powered off. + * SRAM1, SRAM2, BKRAM and registers contents are lost except for registers in the Backup domain. + * The BOR is not available. + * @note The I/Os can be configured either with a pull-up or pull-down or can be kept in analog state. + * @note According to system power policy, system entering in Shutdown mode + * is depending on other CPU power mode. + * @retval None + */ +void HAL_PWREx_EnterSHUTDOWNMode(void) +{ + /* Set Shutdown mode */ + MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_SHUTDOWN); + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); + + /* This option is used to ensure that store operations are completed */ +#if defined (__CC_ARM) + __force_stores(); +#endif /* __CC_ARM */ + + /* Request Wait For Interrupt */ + __WFI(); + + /* Following code is executed after wake up if system didn't go to SHUTDOWN + * or STANDBY mode according to power policy */ + + /* Reset SLEEPDEEP bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); +} + + +/** + * @brief This function handles the PWR PVD/PVMx interrupt request. + * @note This API should be called under the PVD_PVM_IRQHandler(). + * @retval None + */ +void HAL_PWREx_PVD_PVM_IRQHandler(void) +{ + /* Check PWR exti flag */ + if (__HAL_PWR_PVD_EXTI_GET_FLAG() != 0U) + { + /* PWR PVD interrupt user callback */ + HAL_PWR_PVDCallback(); + + /* Clear PVD exti pending bit */ + __HAL_PWR_PVD_EXTI_CLEAR_FLAG(); + } + +#if defined(PWR_CR2_PVME1) + /* Next, successively check PVMx exti flags */ + if (__HAL_PWR_PVM1_EXTI_GET_FLAG() != 0U) + { + /* PWR PVM1 interrupt user callback */ + HAL_PWREx_PVM1Callback(); + + /* Clear PVM1 exti pending bit */ + __HAL_PWR_PVM1_EXTI_CLEAR_FLAG(); + } +#endif /* PWR_CR2_PVME1 */ + + if (__HAL_PWR_PVM3_EXTI_GET_FLAG() != 0U) + { + /* PWR PVM3 interrupt user callback */ + HAL_PWREx_PVM3Callback(); + + /* Clear PVM3 exti pending bit */ + __HAL_PWR_PVM3_EXTI_CLEAR_FLAG(); + } +} + +#if defined(PWR_CR2_PVME1) +/** + * @brief PWR PVM1 interrupt callback + * @retval None + */ +__weak void HAL_PWREx_PVM1Callback(void) +{ + /* NOTE : This function should not be modified; when the callback is needed, + HAL_PWREx_PVM1Callback() API can be implemented in the user file + */ +} +#endif /* PWR_CR2_PVME1 */ + +/** + * @brief PWR PVM3 interrupt callback + * @retval None + */ +__weak void HAL_PWREx_PVM3Callback(void) +{ + /* NOTE : This function should not be modified; when the callback is needed, + HAL_PWREx_PVM3Callback() API can be implemented in the user file + */ +} + + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_PWR_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rcc.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rcc.c new file mode 100644 index 0000000..d2c2f5d --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rcc.c @@ -0,0 +1,1824 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_rcc.c + * @author MCD Application Team + * @brief RCC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Reset and Clock Control (RCC) peripheral: + * + Initialization and de-initialization functions + * + Peripheral Control functions + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### RCC specific features ##### + ============================================================================== + [..] + After reset the device is running from Multiple Speed Internal oscillator + (4 MHz) with Flash 0 wait state. Flash prefetch buffer, D-Cache + and I-Cache are disabled, and all peripherals are off except internal + SRAM, Flash and JTAG. + + (+) There is no prescaler on High speed (AHBs) and Low speed (APBs) buses: + all peripherals mapped on these buses are running at MSI speed. + (+) The clock for all peripherals is switched off, except the SRAM and FLASH. + (+) All GPIOs are in analog mode, except the JTAG pins which + are assigned to be used for debug purpose. + + [..] + Once the device started from reset, the user application has to: + (+) Configure the clock source to be used to drive the System clock + (if the application needs higher frequency/performance) + (+) Configure the System clock frequency and Flash settings + (+) Configure the AHB and APB buses prescalers + (+) Enable the clock for the peripheral(s) to be used + (+) Configure the clock source(s) for peripherals which clocks are not + derived from the System clock (SAI1, RTC, ADC, USB/RNG, USART1, LPUART1, LPTIMx, I2Cx, SMPS) + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @defgroup RCC RCC + * @brief RCC HAL module driver + * @{ + */ + +#ifdef HAL_RCC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup RCC_Private_Constants RCC Private Constants + * @{ + */ +#define HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT +#define HSI_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ +#define MSI_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ +#define LSI1_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ +#define LSI2_TIMEOUT_VALUE (3U) /* to be adjusted with DS */ +#define HSI48_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ +#define PLL_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ +#if defined(SAI1) +#define PLLSAI1_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ +#endif /* SAI1 */ +#define PRESCALER_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ +#define LATENCY_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ +#define CLOCKSWITCH_TIMEOUT_VALUE (5000U) /* 5 s */ + +#define PLLSOURCE_NONE (0U) +#define MEGA_HZ (1000000U) /* Division factor to convert Hz in Mhz */ +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/** @defgroup RCC_Private_Macros RCC Private Macros + * @{ + */ + +#define RCC_GET_MCO_GPIO_PIN(__RCC_MCOx__) ((__RCC_MCOx__) & GPIO_PIN_MASK) + +#define RCC_GET_MCO_GPIO_AF(__RCC_MCOx__) (((__RCC_MCOx__) & RCC_MCO_GPIOAF_MASK) >> RCC_MCO_GPIOAF_POS) + +#define RCC_GET_MCO_GPIO_INDEX(__RCC_MCOx__) (((__RCC_MCOx__) & RCC_MCO_GPIOPORT_MASK) >> RCC_MCO_GPIOPORT_POS) + +#define RCC_GET_MCO_GPIO_PORT(__RCC_MCOx__) (IOPORT_BASE + ((0x00000400UL) * RCC_GET_MCO_GPIO_INDEX((__RCC_MCOx__)))) + +#define RCC_PLL_OSCSOURCE_CONFIG(__HAL_RCC_PLLSOURCE__) \ + (MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (uint32_t)(__HAL_RCC_PLLSOURCE__))) + +#define __COUNTOF(_A_) (sizeof(_A_) / sizeof(*(_A_))) +/** + * @} + */ + +/* Private variables ---------------------------------------------------------*/ +/** @defgroup RCC_Private_Variables RCC Private Variables + * @{ + */ + + +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup RCC_Private_Functions RCC Private Functions + * @{ + */ +static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t MSI_Range); +static HAL_StatusTypeDef RCC_SetFlashLatency(uint32_t Flash_ClkSrcFreq, uint32_t VCORE_Voltage); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup RCC_Exported_Functions RCC Exported Functions + * @{ + */ + +/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] + This section provides functions allowing to configure the internal and external oscillators + (HSE, HSI, LSE, MSI, LSI1, LSI2, PLL, CSS and MCO) and the System buses clocks (SYSCLK, HCLK1, HCLK2, HCLK4, PCLK1 + and PCLK2). + + [..] Internal/external clock and PLL configuration + (+) HSI (high-speed internal): 16 MHz factory-trimmed RC used directly or through + the PLL as System clock source. + + (+) MSI (Multiple Speed Internal): Its frequency is software trimmable from 100KHZ to 48MHZ. + It can be used to generate the clock for the USB FS (48 MHz). + The number of flash wait states is automatically adjusted when MSI range is updated with + HAL_RCC_OscConfig() and the MSI is used as System clock source. + + (+) LSI1/LSI2 (low-speed internal): 32 KHz low consumption RC used as IWDG and/or RTC + clock source. + + (+) HSE (high-speed external): 32 MHz crystal oscillator used directly or + through the PLL as System clock source. Can be used also optionally as RTC clock source. + + (+) LSE (low-speed external): 32.768 KHz oscillator used optionally as RTC clock source + or the RF system Auto-wakeup from Stop and Standby modes. + + (+) PLL (clocked by HSI, HSE or MSI) providing up to three independent output clocks: + (++) The first output is used to generate the high speed system clock (up to 64MHz). + (++) The second output is used to generate the clock for the USB FS (48 MHz), + the random analog generator (<=48 MHz) + (++) The third output is used to generate an accurate clock to achieve + high-quality audio performance on SAI interface. + + (+) PLLSAI1 (clocked by HSI, HSE or MSI) providing up to three independent output clocks: + (++) The first output is used to generate SAR ADC clock. + (++) The second output is used to generate the clock for the USB FS (48 MHz), + the random analog generator (<=48 MHz). + (++) The Third output is used to generate an accurate clock to achieve + high-quality audio performance on SAI interface. + + + (+) CSS (Clock security system): once enabled, if a HSE clock failure occurs + (HSE used directly or through PLL as System clock source), the System clock + is automatically switched to MSI or the HSI oscillator (depending on the + STOPWUCK configuration) and an interrupt is generated if enabled. + The interrupt is linked to the CPU1 and CPU2 NMI (Non-Maskable Interrupt) exception vector. + + (+) LSECSS: once enabled, if a LSE clock failure occurs, the LSE + clock is no longer supplied to the RTC but no hardware action is made to the registers. If the + MSI was in PLL-mode, this mode is disabled. + In Standby mode a wakeup is generated. In other modes an interrupt can be sent to wakeup + the software + + (+) MCO (microcontroller clock output): used to output MSI, LSI1, LSI2, HSI, LSE, HSE (before and + after stabilization), SYSCLK, HSI48 or main PLL clock (through a configurable prescaler) + on PA8, PB6 & PA15 pins. + + [..] System, AHB and APB buses clocks configuration + (+) Several clock sources can be used to drive the System clock (SYSCLK): MSI, HSI, + HSE and main PLL. + The AHB clock (HCLK1) is derived from System clock through configurable + prescaler and used to clock the CPU, memory and peripherals mapped + on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived + from AHB clock through configurable prescalers and used to clock + the peripherals mapped on these buses. You can use + HAL_RCC_GetSysClockFreq() function to retrieve the frequencies of these clocks. + The AHB4 clock (HCLK4) is derived from System clock through configurable + prescaler and used to clock the FLASH + + -@- All the peripheral clocks are derived from the System clock (SYSCLK) except: + + (+@) SAI: the SAI clock can be derived either from a specific PLL (PLLSAI1) or (PLLSYS) or + from an external clock mapped on the SAI_CKIN pin. + You have to use HAL_RCCEx_PeriphCLKConfig() function to configure this clock. + (+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock + divided by 32. + You have to use __HAL_RCC_RTC_ENABLE() and HAL_RCCEx_PeriphCLKConfig() function + to configure this clock. + (+@) USB FS and RNG: USB FS requires a frequency equal to 48 MHz + to work correctly, while RNG peripherals requires a frequency + equal or lower than to 48 MHz. This clock is derived of the main PLL or PLLSAI1 + through PLLQ divider. You have to enable the peripheral clock and use + HAL_RCCEx_PeriphCLKConfig() function to configure this clock. + (+@) IWDG clock which is always the LSI clock. + + + (+) The maximum frequency of the SYSCLK, HCLK1, HCLK4, PCLK1 and PCLK2 is 64 MHz. + The maximum frequency of the HCLK2 is 32 MHz. + The clock source frequency should be adapted depending on the device voltage range + as listed in the Reference Manual "Clock source frequency versus voltage scaling" chapter. + + @endverbatim + + Table 1. HCLK4 clock frequency. + +-------------------------------------------------------+ + | Latency | HCLK4 clock frequency (MHz) | + | |-------------------------------------| + | | voltage range 1 | voltage range 2 | + | | 1.2 V | 1.0 V | + |-----------------|------------------|------------------| + |0WS(1 CPU cycles)| HCLK4 <= 18 | HCLK4 <= 6 | + |-----------------|------------------|------------------| + |1WS(2 CPU cycles)| HCLK4 <= 36 | HCLK4 <= 12 | + |-----------------|------------------|------------------| + |2WS(3 CPU cycles)| HCLK4 <= 54 | HCLK4 <= 16 | + |-----------------|------------------|------------------| + |3WS(4 CPU cycles)| HCLK4 <= 64 | HCLK4 <= n.a. | + |-----------------|------------------|------------------| + + * @{ + */ + +/** + * @brief Reset the RCC clock configuration to the default reset state. + * @note The default reset state of the clock configuration is given below: + * - MSI ON and used as system clock source + * - HSE, HSI, PLL, PLLSAI1 + * - HCLK1, HCLK2, HCLK4, PCLK1 and PCLK2 prescalers set to 1. + * - CSS, MCO OFF + * - All interrupts disabled + * @note This function doesn't modify the configuration of the + * - Peripheral clocks + * - LSI, LSE and RTC clocks + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RCC_DeInit(void) +{ + uint32_t tickstart; + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* MSI PLL OFF */ + LL_RCC_MSI_DisablePLLMode(); + + /* Set MSION bit */ + LL_RCC_MSI_Enable(); + + /* Wait till MSI is ready */ + while (LL_RCC_MSI_IsReady() == 0U) + { + if ((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Set MSIRANGE default value */ + LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_6); + + /* Set MSITRIM bits to the reset value*/ + LL_RCC_MSI_SetCalibTrimming(0); + + /* Set HSITRIM bits to the reset value*/ + LL_RCC_HSI_SetCalibTrimming(0x40U); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Reset CFGR register (MSI is selected as system clock source) */ + CLEAR_REG(RCC->CFGR); + + /* Wait till MSI is ready */ + while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != 0U) + { + if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Reset HSION, HSIKERON, HSIASFS, HSEON, PLLON, PLLSAI11ON, HSEPRE bits */ +#if defined(SAI1) + CLEAR_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSIKERON | RCC_CR_HSIASFS | RCC_CR_HSEON | RCC_CR_HSEPRE | RCC_CR_PLLON | + RCC_CR_PLLSAI1ON); +#else + CLEAR_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSIKERON | RCC_CR_HSIASFS | RCC_CR_HSEON | RCC_CR_HSEPRE | RCC_CR_PLLON); +#endif /* SAI1 */ + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while (LL_RCC_PLL_IsReady() != 0U) + { + if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* once PLL is OFF, reset PLLCFGR register to default value */ + WRITE_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLR_0 | RCC_PLLCFGR_PLLQ_0 | RCC_PLLCFGR_PLLP_1 | RCC_PLLCFGR_PLLN_0); + +#if defined(SAI1) + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while (LL_RCC_PLLSAI1_IsReady() != 0U) + { + if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + /* once PLLSAI1 is OFF, reset PLLSAI1CFGR register to default value */ + WRITE_REG(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLR_0 | RCC_PLLSAI1CFGR_PLLQ_0 | + RCC_PLLSAI1CFGR_PLLP_1 | RCC_PLLSAI1CFGR_PLLN_0); +#endif /* SAI1 */ + + /* Disable all interrupts */ + CLEAR_REG(RCC->CIER); + + /* Clear all interrupt flags */ + WRITE_REG(RCC->CICR, 0xFFFFFFFFU); + + /* EXTCFGR reset*/ + LL_RCC_WriteReg(EXTCFGR, 0x00030000U); + + /* Update the SystemCoreClock global variable */ + SystemCoreClock = MSI_VALUE; + + /* Adapt Systick interrupt period */ + if (HAL_InitTick(uwTickPrio) != HAL_OK) + { + return HAL_ERROR; + } + else + { + return HAL_OK; + } +} + +/** + * @brief Initialize the RCC Oscillators according to the specified parameters in the + * @ref RCC_OscInitTypeDef. + * @param RCC_OscInitStruct pointer to a @ref RCC_OscInitTypeDef structure that + * contains the configuration information for the RCC Oscillators. + * @note The PLL is not disabled when used as system clock. + * @note The PLL source is not updated when used as PLLSAI1 clock source. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) +{ + uint32_t tickstart; + + /* Check Null pointer */ + if (RCC_OscInitStruct == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); + + /*----------------------------- MSI Configuration --------------------------*/ + if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI) + { + /* Check the parameters */ + assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState)); + assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue)); + assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange)); + + /* When the MSI is used as system clock it will not be disabled */ + const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE(); + const uint32_t temp_plloscsrc = __HAL_RCC_GET_PLL_OSCSOURCE(); + if ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_MSI) || + ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_plloscsrc == RCC_PLLSOURCE_MSI))) + { + if (RCC_OscInitStruct->MSIState == RCC_MSI_OFF) + { + return HAL_ERROR; + } + /* Otherwise, just the calibration and MSI range change are allowed */ + else + { + /* To correctly read data from FLASH memory, the number of wait states (LATENCY) + must be correctly programmed according to the frequency of the AHB4 clock + and the supply voltage of the device. */ + if (RCC_OscInitStruct->MSIClockRange > __HAL_RCC_GET_MSI_RANGE()) + { + /* First increase number of wait states update if necessary */ + if (RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK) + { + return HAL_ERROR; + } + + /* Selects the Multiple Speed oscillator (MSI) clock range .*/ + __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); + /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ + __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); + } + else + { + /* Else, keep current flash latency while decreasing applies */ + /* Selects the Multiple Speed oscillator (MSI) clock range .*/ + __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); + /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ + __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); + + /* Decrease number of wait states update if necessary */ + if (RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK) + { + return HAL_ERROR; + } + } + + /* Update the SystemCoreClock global variable */ + SystemCoreClock = HAL_RCC_GetHCLKFreq(); + + if (HAL_InitTick(uwTickPrio) != HAL_OK) + { + return HAL_ERROR; + } + } + } + else + { + /* Check the MSI State */ + if (RCC_OscInitStruct->MSIState != RCC_MSI_OFF) + { + /* Enable the Internal High Speed oscillator (MSI). */ + __HAL_RCC_MSI_ENABLE(); + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Wait till MSI is ready */ + while (LL_RCC_MSI_IsReady() == 0U) + { + if ((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Selects the Multiple Speed oscillator (MSI) clock range .*/ + __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); + /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ + __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); + + } + else + { + /* Disable the Internal High Speed oscillator (MSI). */ + __HAL_RCC_MSI_DISABLE(); + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Wait till MSI is disabled */ + while (LL_RCC_MSI_IsReady() != 0U) + { + if ((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + } + + /*------------------------------- HSE Configuration ------------------------*/ + if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) + { + /* Check the parameters */ + assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); + + /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */ + const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE(); + const uint32_t temp_plloscsrc = __HAL_RCC_GET_PLL_OSCSOURCE(); + if ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSE) || + ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_plloscsrc == RCC_PLLSOURCE_HSE))) + { + if (RCC_OscInitStruct->HSEState == RCC_HSE_OFF) + { + return HAL_ERROR; + } + } + else + { + /* Set the new HSE configuration ---------------------------------------*/ + __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); + + /* Check the HSE State */ + if (RCC_OscInitStruct->HSEState != RCC_HSE_OFF) + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSE is ready */ + while (LL_RCC_HSE_IsReady() == 0U) + { + if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSE is disabled */ + while (LL_RCC_HSE_IsReady() != 0U) + { + if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + } + + /*----------------------------- HSI Configuration --------------------------*/ + if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) + { + /* Check the parameters */ + assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); + assert_param(IS_RCC_HSI_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); + + /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ + const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE(); + const uint32_t temp_plloscsrc = __HAL_RCC_GET_PLL_OSCSOURCE(); + if ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSI) || + ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_plloscsrc == RCC_PLLSOURCE_HSI))) + { + /* When HSI is used as system clock it will not be disabled */ + if (RCC_OscInitStruct->HSIState == RCC_HSI_OFF) + { + return HAL_ERROR; + } + /* Otherwise, just the calibration is allowed */ + else + { + /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ + __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); + } + } + else + { + /* Check the HSI State */ + if (RCC_OscInitStruct->HSIState != RCC_HSI_OFF) + { + /* Enable the Internal High Speed oscillator (HSI). */ + __HAL_RCC_HSI_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSI is ready */ + while (LL_RCC_HSI_IsReady() == 0U) + { + if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ + __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); + } + else + { + /* Disable the Internal High Speed oscillator (HSI). */ + __HAL_RCC_HSI_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSI is disabled */ + while (LL_RCC_HSI_IsReady() != 0U) + { + if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + } + /*------------------------------ LSI Configuration (LSI1 or LSI2) -------------------------*/ + + if ((((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI1) == RCC_OSCILLATORTYPE_LSI1) || \ + (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI2) == RCC_OSCILLATORTYPE_LSI2)) + { + /* Check the parameters */ + assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); + + /* Check the LSI State */ + if (RCC_OscInitStruct->LSIState != RCC_LSI_OFF) + { + /*------------------------------ LSI2 selected by default (when Switch ON) -------------------------*/ + if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI2) == RCC_OSCILLATORTYPE_LSI2) + { + assert_param(IS_RCC_LSI2_CALIBRATION_VALUE(RCC_OscInitStruct->LSI2CalibrationValue)); + + /* 1. Check LSI1 state and enable if required */ + if (LL_RCC_LSI1_IsReady() == 0U) + { + /* This is required to enable LSI1 before enabling LSI2 */ + __HAL_RCC_LSI1_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSI1 is ready */ + while (LL_RCC_LSI1_IsReady() == 0U) + { + if ((HAL_GetTick() - tickstart) > LSI1_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + + /* 2. Enable the Internal Low Speed oscillator (LSI2) and set trimming value */ + __HAL_RCC_LSI2_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSI2 is ready */ + while (LL_RCC_LSI2_IsReady() == 0U) + { + if ((HAL_GetTick() - tickstart) > LSI2_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + /* Adjusts the Internal Low Spee oscillator (LSI2) calibration value */ + __HAL_RCC_LSI2_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->LSI2CalibrationValue); + + /* 3. Disable LSI1 */ + + /* LSI1 was initially not enable, require to disable it */ + __HAL_RCC_LSI1_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSI1 is disabled */ + while (LL_RCC_LSI1_IsReady() != 0U) + { + if ((HAL_GetTick() - tickstart) > LSI1_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /*------------------------------ LSI1 selected (only if LSI2 OFF)-------------------------*/ + + /* 1. Enable the Internal Low Speed oscillator (LSI1). */ + __HAL_RCC_LSI1_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSI1 is ready */ + while (LL_RCC_LSI1_IsReady() == 0U) + { + if ((HAL_GetTick() - tickstart) > LSI1_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + /*2. Switch OFF LSI2*/ + + /* Disable the Internal Low Speed oscillator (LSI2). */ + __HAL_RCC_LSI2_DISABLE(); + + /* Wait till LSI2 is disabled */ + while (LL_RCC_LSI2_IsReady() != 0U) + { + if ((HAL_GetTick() - tickstart) > LSI2_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + else + { + + /* Disable the Internal Low Speed oscillator (LSI2). */ + __HAL_RCC_LSI2_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSI2 is disabled */ + while (LL_RCC_LSI2_IsReady() != 0U) + { + if ((HAL_GetTick() - tickstart) > LSI2_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Disable the Internal Low Speed oscillator (LSI1). */ + __HAL_RCC_LSI1_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSI1 is disabled */ + while (LL_RCC_LSI1_IsReady() != 0U) + { + if ((HAL_GetTick() - tickstart) > LSI1_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + + /*------------------------------ LSE Configuration -------------------------*/ + if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) + { + /* Check the parameters */ + assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); + + /* Update LSE configuration in Backup Domain control register */ + /* Requires to enable write access to Backup Domain of necessary */ + + if (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP)) + { + /* Enable write access to Backup domain */ + HAL_PWR_EnableBkUpAccess(); + + /* Wait for Backup domain Write protection disable */ + tickstart = HAL_GetTick(); + + while (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP)) + { + if ((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + + /* Set the new LSE configuration -----------------------------------------*/ + __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); + + /* Check the LSE State */ + if (RCC_OscInitStruct->LSEState != RCC_LSE_OFF) + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while (LL_RCC_LSE_IsReady() == 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is disabled */ + while (LL_RCC_LSE_IsReady() != 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + + } +#if defined(RCC_HSI48_SUPPORT) + /*------------------------------ HSI48 Configuration -----------------------*/ + if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48) + { + /* Check the parameters */ + assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State)); + + /* Check the HSI State */ + if (RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF) + { + /* Enable the Internal Low Speed oscillator (HSI48). */ + __HAL_RCC_HSI48_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSI48 is ready */ + while (LL_RCC_HSI48_IsReady() == 0U) + { + if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Disable the Internal Low Speed oscillator (HSI48). */ + __HAL_RCC_HSI48_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSI48 is disabled */ + while (LL_RCC_HSI48_IsReady() != 0U) + { + if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } +#endif /* RCC_HSI48_SUPPORT */ + /*-------------------------------- PLL Configuration -----------------------*/ + /* Check the parameters */ + assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); + + if (RCC_OscInitStruct->PLL.PLLState != RCC_PLL_NONE) + { + const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE(); + const uint32_t temp_pllconfig = RCC->PLLCFGR; + + /* PLL On ? */ + if (RCC_OscInitStruct->PLL.PLLState == RCC_PLL_ON) + { + /* Check the parameters */ + assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); + assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM)); + assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN)); + assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP)); + assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ)); + assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR)); + + /* Do nothing if PLL configuration is unchanged */ + if ((READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) || + (READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLM) != RCC_OscInitStruct->PLL.PLLM) || + ((READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos) != RCC_OscInitStruct->PLL.PLLN) || + (READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLP) != RCC_OscInitStruct->PLL.PLLP) || + (READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLQ) != RCC_OscInitStruct->PLL.PLLQ) || + (READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLR) != RCC_OscInitStruct->PLL.PLLR)) + { + /* Check if the PLL is used as system clock or not */ + if (temp_sysclksrc != RCC_SYSCLKSOURCE_STATUS_PLLCLK) + { +#if defined(SAI1) + /* Check if main PLL can be updated */ + /* Not possible if the source is shared by other enabled PLLSAIx */ + if (READ_BIT(RCC->CR, RCC_CR_PLLSAI1ON) != 0U) + + { + return HAL_ERROR; + } + else +#endif /* SAI1 */ + { + /* Disable the main PLL. */ + __HAL_RCC_PLL_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U) + { + if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Configure the main PLL clock source, multiplication and division factors. */ + __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, + RCC_OscInitStruct->PLL.PLLM, + RCC_OscInitStruct->PLL.PLLN, + RCC_OscInitStruct->PLL.PLLP, + RCC_OscInitStruct->PLL.PLLQ, + RCC_OscInitStruct->PLL.PLLR); + + /* Enable the main PLL. */ + __HAL_RCC_PLL_ENABLE(); + + /* Enable PLL System Clock output. */ + __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SYSCLK); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + else + { + /* PLL is already used as System core clock */ + return HAL_ERROR; + } + } + else + { + /* PLL configuration is unchanged */ + /* Re-enable PLL if it was disabled (ie. low power mode) */ + if (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U) + { + /* Enable the main PLL. */ + __HAL_RCC_PLL_ENABLE(); + + /* Enable PLL System Clock output. */ + __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SYSCLK); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + } + else + { + /* Check that PLL is not used as system clock or not */ + if (temp_sysclksrc != RCC_SYSCLKSOURCE_STATUS_PLLCLK) + { + /* Disable the main PLL. */ + __HAL_RCC_PLL_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is disabled */ + while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U) + { + if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Disable the PLL source and outputs to save power when PLL is off */ +#if defined(SAI1) && defined(USB) + CLEAR_BIT(RCC->PLLCFGR, (RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLPEN | RCC_PLLCFGR_PLLQEN | RCC_PLLCFGR_PLLREN)); +#else + CLEAR_BIT(RCC->PLLCFGR, (RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLREN)); +#endif /* SAI1 && USB */ + } + else + { + /* PLL is already used as System core clock */ + return HAL_ERROR; + } + } + } + return HAL_OK; +} + + +/** + * @brief Initialize the CPU, AHB and APB buses clocks according to the specified + * parameters in the RCC_ClkInitStruct. + * @param RCC_ClkInitStruct pointer to a @ref RCC_ClkInitTypeDef structure that + * contains the configuration information for the RCC peripheral. + * @param FLatency FLASH Latency + * This parameter can be one of the following values: + * @arg FLASH_LATENCY_0 FLASH 0 Latency cycle + * @arg FLASH_LATENCY_1 FLASH 1 Latency cycle + * @arg FLASH_LATENCY_2 FLASH 2 Latency cycle + * @arg FLASH_LATENCY_3 FLASH 3 Latency cycle + * + * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency + * and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function + * + * @note The MSI is used by default as system clock source after + * startup from Reset, wake-up from STANDBY mode. After restart from Reset, + * the MSI frequency is set to its default value 4 MHz. + * + * @note The HSI can be selected as system clock source after + * from STOP modes or in case of failure of the HSE used directly or indirectly + * as system clock (if the Clock Security System CSS is enabled). + * + * @note A switch from one clock source to another occurs only if the target + * clock source is ready (clock stable after startup delay or PLL locked). + * If a clock source which is not yet ready is selected, the switch will + * occur when the clock source is ready. + * + * @note You can use @ref HAL_RCC_GetClockConfig() function to know which clock is + * currently used as system clock source. + * + * @note Depending on the device voltage range, the software has to set correctly + * HPRE[3:0] bits to ensure that HCLK1 not exceed the maximum allowed frequency + * (for more details refer to section above "Initialization/de-initialization functions") + * @retval None + */ +HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) +{ + uint32_t tickstart; + + /* Check Null pointer */ + if (RCC_ClkInitStruct == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); + assert_param(IS_FLASH_LATENCY(FLatency)); + + /* To correctly read data from FLASH memory, the number of wait states (LATENCY) + must be correctly programmed according to the frequency of the FLASH clock + (HCLK4) and the supply voltage of the device. */ + + /* Increasing the number of wait states because of higher CPU frequency */ + if (FLatency > __HAL_FLASH_GET_LATENCY()) + { + /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ + __HAL_FLASH_SET_LATENCY(FLatency); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Check that the new number of wait states is taken into account to access the Flash + memory by reading the FLASH_ACR register */ + while (__HAL_FLASH_GET_LATENCY() != FLatency) + { + if ((HAL_GetTick() - tickstart) > LATENCY_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + + /*-------------------------- HCLK1 Configuration --------------------------*/ + if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) + { + assert_param(IS_RCC_HCLKx(RCC_ClkInitStruct->AHBCLKDivider)); + LL_RCC_SetAHBPrescaler(RCC_ClkInitStruct->AHBCLKDivider); + + /* HCLK1 prescaler flag when value applied */ + tickstart = HAL_GetTick(); + while (LL_RCC_IsActiveFlag_HPRE() == 0U) + { + if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + + /*-------------------------- HCLK2 Configuration --------------------------*/ + if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK2) == RCC_CLOCKTYPE_HCLK2) + { + assert_param(IS_RCC_HCLKx(RCC_ClkInitStruct->AHBCLK2Divider)); + LL_C2_RCC_SetAHBPrescaler(RCC_ClkInitStruct->AHBCLK2Divider); + + /* HCLK2 prescaler flag when value applied */ + tickstart = HAL_GetTick(); + while (LL_RCC_IsActiveFlag_C2HPRE() == 0U) + { + if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + /*-------------------------- HCLK4 Configuration --------------------------*/ + if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK4) == RCC_CLOCKTYPE_HCLK4) + { + assert_param(IS_RCC_HCLKx(RCC_ClkInitStruct->AHBCLK4Divider)); + LL_RCC_SetAHB4Prescaler(RCC_ClkInitStruct->AHBCLK4Divider); + + /* AHB shared prescaler flag when value applied */ + tickstart = HAL_GetTick(); + while (LL_RCC_IsActiveFlag_SHDHPRE() == 0U) + { + if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + + /*-------------------------- PCLK1 Configuration ---------------------------*/ + if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) + { + assert_param(IS_RCC_PCLKx(RCC_ClkInitStruct->APB1CLKDivider)); + LL_RCC_SetAPB1Prescaler(RCC_ClkInitStruct->APB1CLKDivider); + + /* APB1 prescaler flag when value applied */ + tickstart = HAL_GetTick(); + while (LL_RCC_IsActiveFlag_PPRE1() == 0U) + { + if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + + /*-------------------------- PCLK2 Configuration ---------------------------*/ + if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) + { + assert_param(IS_RCC_PCLKx(RCC_ClkInitStruct->APB2CLKDivider)); + LL_RCC_SetAPB2Prescaler((RCC_ClkInitStruct->APB2CLKDivider) << 3U); + + /* APB2 prescaler flag when value applied */ + tickstart = HAL_GetTick(); + while (LL_RCC_IsActiveFlag_PPRE2() == 0U) + { + if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + + /*------------------------- SYSCLK Configuration ---------------------------*/ + if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) + { + assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); + + /* HSE is selected as System Clock Source */ + if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) + { + /* Check the HSE ready flag */ + if (LL_RCC_HSE_IsReady() == 0U) + { + return HAL_ERROR; + } + } + /* PLL is selected as System Clock Source */ + else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) + { + /* Check the PLL ready flag */ + if (LL_RCC_PLL_IsReady() == 0U) + { + return HAL_ERROR; + } + } + /* MSI is selected as System Clock Source */ + else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_MSI) + { + /* Check the MSI ready flag */ + if (LL_RCC_MSI_IsReady() == 0U) + { + return HAL_ERROR; + } + } + /* HSI is selected as System Clock Source */ + else + { + /* Check the HSI ready flag */ + if (LL_RCC_HSI_IsReady() == 0U) + { + return HAL_ERROR; + } + + } + + /* apply system clock switch */ + LL_RCC_SetSysClkSource(RCC_ClkInitStruct->SYSCLKSource); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* check system clock source switch status */ + while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos)) + { + if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + + /* Decreasing the number of wait states because of lower CPU frequency */ + if (FLatency < __HAL_FLASH_GET_LATENCY()) + { + /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ + __HAL_FLASH_SET_LATENCY(FLatency); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Check that the new number of wait states is taken into account to access the Flash + memory by reading the FLASH_ACR register */ + while (__HAL_FLASH_GET_LATENCY() != FLatency) + { + if ((HAL_GetTick() - tickstart) > LATENCY_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + + /*---------------------------------------------------------------------------*/ + + /* Update the SystemCoreClock global variable */ + SystemCoreClock = HAL_RCC_GetHCLKFreq(); + + /* Configure the source of time base considering new system clocks settings*/ + return HAL_InitTick(HAL_GetTickPrio()); +} + +/** + * @} + */ + +/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions + * @brief RCC clocks control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to: + + (+) Output clock to MCO pin. + (+) Retrieve current clock frequencies. + (+) Enable the Clock Security System. + +@endverbatim + * @{ + */ + +/** + * @brief Select the clock source to output on MCO1 pin(PA8) or MCO2 pin (PB6) or MCO3 pin (PA15). + * @note PA8, PB6 or PA15 should be configured in alternate function mode. + * @param RCC_MCOx specifies the output direction for the clock source. + * @arg @ref RCC_MCO1_PA8 Clock source to output on MCO1 pin(PA8) + * @arg @ref RCC_MCO2_PB6 Clock source to output on MCO2 pin(PB6) + * @arg @ref RCC_MCO3_PA15 Clock source to output on MCO3 pin(PA15) + * @param RCC_MCOSource specifies the clock source to output. + * This parameter can be one of the following values: + * @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled, no clock on MCO + * @arg @ref RCC_MCO1SOURCE_SYSCLK system clock selected as MCO source + * @arg @ref RCC_MCO1SOURCE_MSI MSI clock selected as MCO source + * @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source + * @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO source + * @arg @ref RCC_MCO1SOURCE_PLLCLK main PLL clock selected as MCO source + * @arg @ref RCC_MCO1SOURCE_LSI1 LSI1 clock selected as MCO source + * @arg @ref RCC_MCO1SOURCE_LSI2 LSI2 clock selected as MCO source + * @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source + * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source for devices with HSI48 + * @arg @ref RCC_MCO1SOURCE_HSE_BEFORE_STAB HSE clock before stabilization selected as MCO source + * @param RCC_MCODiv specifies the MCO prescaler. + * This parameter can be one of the following values: + * @arg @ref RCC_MCODIV_1 no division applied to MCO clock + * @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock + * @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock + * @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock + * @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock + * @retval None + */ +void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) +{ + GPIO_InitTypeDef gpio_initstruct; + uint32_t mcoindex; + uint32_t mco_gpio_index; + GPIO_TypeDef *mco_gpio_port; + + /* Check the parameters */ + assert_param(IS_RCC_MCO(RCC_MCOx)); + + /* Common GPIO init parameters */ + gpio_initstruct.Mode = GPIO_MODE_AF_PP; + gpio_initstruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; + gpio_initstruct.Pull = GPIO_NOPULL; + + /* Get MCOx selection */ + mcoindex = RCC_MCOx & RCC_MCO_INDEX_MASK; + + /* Get MCOx GPIO Port */ + mco_gpio_port = (GPIO_TypeDef *) RCC_GET_MCO_GPIO_PORT(RCC_MCOx); + + /* MCOx Clock Enable */ + mco_gpio_index = RCC_GET_MCO_GPIO_INDEX(RCC_MCOx); + SET_BIT(RCC->AHB2ENR, (1UL << mco_gpio_index)); + + /* Configure the MCOx pin in alternate function mode */ + gpio_initstruct.Pin = RCC_GET_MCO_GPIO_PIN(RCC_MCOx); + gpio_initstruct.Alternate = RCC_GET_MCO_GPIO_AF(RCC_MCOx); + HAL_GPIO_Init(mco_gpio_port, &gpio_initstruct); + + if (mcoindex == RCC_MCO1_INDEX) + { + assert_param(IS_RCC_MCODIV(RCC_MCODiv)); + assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); + /* Mask MCOSEL[] and MCOPRE[] bits then set MCO clock source and prescaler */ + LL_RCC_ConfigMCO(RCC_MCOSource, RCC_MCODiv); + } + else if (mcoindex == RCC_MCO2_INDEX) + { + assert_param(IS_RCC_MCODIV(RCC_MCODiv)); + assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource)); + /* Mask MCOSEL[] and MCOPRE[] bits then set MCO clock source and prescaler */ + LL_RCC_ConfigMCO(RCC_MCOSource, RCC_MCODiv); + } +#if defined(RCC_MCO3_SUPPORT) + else if (mcoindex == RCC_MCO3_INDEX) + { + assert_param(IS_RCC_MCODIV(RCC_MCODiv)); + assert_param(IS_RCC_MCO3SOURCE(RCC_MCOSource)); + /* Mask MCOSEL[] and MCOPRE[] bits then set MCO clock source and prescaler */ + LL_RCC_ConfigMCO(RCC_MCOSource, RCC_MCODiv); + } +#endif /* RCC_MCO3_SUPPORT */ + else + {} +} + +/** + * @brief Return the SYSCLK frequency. + * + * @note The system computed by this function is not the real + * frequency in the chip. It is calculated based on the predefined + * constant and the selected clock source: + * @note If SYSCLK source is MSI, function returns values based on MSI range + * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) + * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**) + * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**), + * HSI_VALUE(*) or MSI Value multiplied/divided by the PLL factors. + * @note (*) HSI_VALUE is a constant defined in stm32wbxx_hal_conf.h file (default value + * 16 MHz) but the real value may vary depending on the variations + * in voltage and temperature. + * @note (**) HSE_VALUE is a constant defined in stm32wbxx_hal_conf.h file (default value + * 32 MHz), user has to ensure that HSE_VALUE is same as the real + * frequency of the crystal used. Otherwise, this function may + * have wrong result. + * + * @note The result of this function could be not correct when using fractional + * value for HSE crystal. + * + * @note This function can be used by the user application to compute the + * baudrate for the communication peripherals or configure other parameters. + * + * @note Each time SYSCLK changes, this function must be called to update the + * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. + * + * + * @retval SYSCLK frequency + */ +uint32_t HAL_RCC_GetSysClockFreq(void) +{ + uint32_t pllsource; + uint32_t sysclockfreq; + uint32_t pllinputfreq; + const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE(); + + if (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_MSI) + { + /* Retrieve MSI frequency range in HZ*/ + /* MSI used as system clock source */ + sysclockfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + } + else if (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSI) + { + /* HSI used as system clock source */ + sysclockfreq = HSI_VALUE; + } + else if (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSE) + { + /* HSE used as system clock source */ + if (LL_RCC_HSE_IsEnabledDiv2() == 1U) + { + sysclockfreq = HSE_VALUE / 2U; + } + else + { + sysclockfreq = HSE_VALUE; + } + } + else + { + /* PLL used as system clock source */ + pllsource = LL_RCC_PLL_GetMainSource(); + switch (pllsource) + { + case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ + pllinputfreq = HSI_VALUE; + break; + case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ + if (LL_RCC_HSE_IsEnabledDiv2() == 1U) + { + pllinputfreq = HSE_VALUE / 2U; + } + else + { + pllinputfreq = HSE_VALUE; + } + break; + case RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */ + default: + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + } + sysclockfreq = __LL_RCC_CALC_PLLCLK_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), LL_RCC_PLL_GetN(), + LL_RCC_PLL_GetR()); + } + + return sysclockfreq; +} + +/** + * @brief Return the HCLK frequency. + * @retval HCLK frequency in Hz + */ +uint32_t HAL_RCC_GetHCLKFreq(void) +{ + /* Get SysClock and Compute HCLK1 frequency ---------------------------*/ + return ((uint32_t)(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), LL_RCC_GetAHBPrescaler()))); +} + +/** + * @brief Return the HCLK2 frequency. + * @retval HCLK2 frequency in Hz + */ +uint32_t HAL_RCC_GetHCLK2Freq(void) +{ + /* Get SysClock and Compute HCLK2 frequency ---------------------------*/ + return ((uint32_t)(__LL_RCC_CALC_HCLK2_FREQ(HAL_RCC_GetSysClockFreq(), LL_C2_RCC_GetAHBPrescaler()))); +} + +/** + * @brief Return the HCLK4 frequency. + * @retval HCLK4 frequency in Hz + */ +uint32_t HAL_RCC_GetHCLK4Freq(void) +{ + /* Get SysClock and Compute AHB4 frequency ---------------------------*/ + return ((uint32_t)(__LL_RCC_CALC_HCLK4_FREQ(HAL_RCC_GetSysClockFreq(), LL_RCC_GetAHB4Prescaler()))); +} + +/** + * @brief Return the PCLK1 frequency. + * @note Each time PCLK1 changes, this function must be called to update the + * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. + * @retval PCLK1 frequency in Hz + */ +uint32_t HAL_RCC_GetPCLK1Freq(void) +{ + /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ + return ((uint32_t)(__LL_RCC_CALC_PCLK1_FREQ(HAL_RCC_GetHCLKFreq(), LL_RCC_GetAPB1Prescaler()))); +} + +/** + * @brief Return the PCLK2 frequency. + * @note Each time PCLK2 changes, this function must be called to update the + * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect. + * @retval PCLK2 frequency in Hz + */ +uint32_t HAL_RCC_GetPCLK2Freq(void) +{ + /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/ + return ((uint32_t)(__LL_RCC_CALC_PCLK2_FREQ(HAL_RCC_GetHCLKFreq(), LL_RCC_GetAPB2Prescaler()))); +} + +/** + * @brief Configure the RCC_OscInitStruct according to the internal + * RCC configuration registers. + * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that + * will be configured. + * @retval None + */ +void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) +{ + uint32_t regvalue; + uint32_t regICSRvalue; + uint32_t regPLLCFGRvalue; + + /* Check the parameters */ + assert_param(RCC_OscInitStruct != (void *)NULL); + + /* Set all possible values for the Oscillator type parameter ---------------*/ + RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \ + RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI1 | RCC_OSCILLATORTYPE_LSI2; + +#if defined(RCC_HSI48_SUPPORT) + RCC_OscInitStruct->OscillatorType |= RCC_OSCILLATORTYPE_HSI48; +#endif /* RCC_HSI48_SUPPORT */ + + /* Get register values */ + regvalue = RCC->CR; /* Control register */ + regICSRvalue = RCC->ICSCR; /* Get Internal Clock Sources Calibration register */ + regPLLCFGRvalue = RCC->PLLCFGR; /* Get PLL Configuration register */ + + /* Get the HSE configuration -----------------------------------------------*/ + RCC_OscInitStruct->HSEState = (regvalue & RCC_CR_HSEON); + + /* Get the MSI configuration -----------------------------------------------*/ + RCC_OscInitStruct->MSIState = (regvalue & RCC_CR_MSION); + RCC_OscInitStruct->MSICalibrationValue = (regICSRvalue & RCC_ICSCR_MSITRIM) >> RCC_ICSCR_MSITRIM_Pos; + RCC_OscInitStruct->MSIClockRange = (regvalue & RCC_CR_MSIRANGE); + + /* Get the HSI configuration -----------------------------------------------*/ + RCC_OscInitStruct->HSIState = (regvalue & RCC_CR_HSION); + RCC_OscInitStruct->HSICalibrationValue = ((regICSRvalue & RCC_ICSCR_HSITRIM) >> RCC_ICSCR_HSITRIM_Pos); + + /* Get the PLL configuration -----------------------------------------------*/ + RCC_OscInitStruct->PLL.PLLState = ((regvalue & RCC_CR_PLLON) >> RCC_CR_PLLON_Pos) + 1U; + RCC_OscInitStruct->PLL.PLLSource = (regPLLCFGRvalue & RCC_PLLCFGR_PLLSRC); + RCC_OscInitStruct->PLL.PLLM = (regPLLCFGRvalue & RCC_PLLCFGR_PLLM); + RCC_OscInitStruct->PLL.PLLN = ((regPLLCFGRvalue & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos); + RCC_OscInitStruct->PLL.PLLP = (regPLLCFGRvalue & RCC_PLLCFGR_PLLP); + RCC_OscInitStruct->PLL.PLLQ = (regPLLCFGRvalue & RCC_PLLCFGR_PLLQ); + RCC_OscInitStruct->PLL.PLLR = (regPLLCFGRvalue & RCC_PLLCFGR_PLLR); + + /* Get Backup Domain register */ + regvalue = RCC->BDCR; + + /* Get the LSE configuration -----------------------------------------------*/ + RCC_OscInitStruct->LSEState = (regvalue & RCC_LSE_BYPASS); + + /* Get Control/Status register */ + regvalue = RCC->CSR; + + /* Get the LSI configuration -----------------------------------------------*/ + RCC_OscInitStruct->LSIState = ((regvalue & RCC_LSI_ON) > 0U) ? RCC_LSI_ON : 0U; + +#if defined(RCC_HSI48_SUPPORT) + /* Get Control/Status register */ + regvalue = RCC->CRRCR; + + /* Get the HSI48 configuration ---------------------------------------------*/ + RCC_OscInitStruct->HSI48State = (regvalue & RCC_CRRCR_HSI48ON); +#endif /* RCC_HSI48_SUPPORT */ + +} + +/** + * @brief Configure the RCC_ClkInitStruct according to the internal + * RCC configuration registers. + * @param RCC_ClkInitStruct Pointer to a @ref RCC_ClkInitTypeDef structure that + * will be configured. + * @param pFLatency Pointer on the Flash Latency. + * @retval None + */ +void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) +{ + /* Check the parameters */ + assert_param(RCC_ClkInitStruct != (void *)NULL); + assert_param(pFLatency != (void *)NULL); + + /* Set all possible values for the Clock type parameter --------------------*/ + RCC_ClkInitStruct->ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | + RCC_CLOCKTYPE_PCLK2 | RCC_CLOCKTYPE_HCLK2 | RCC_CLOCKTYPE_HCLK4); + + /* Get the SYSCLK configuration --------------------------------------------*/ + RCC_ClkInitStruct->SYSCLKSource = LL_RCC_GetSysClkSource(); + + /* Get the HCLK configuration ----------------------------------------------*/ + RCC_ClkInitStruct->AHBCLKDivider = LL_RCC_GetAHBPrescaler(); + + /* Get the APB1 configuration ----------------------------------------------*/ + RCC_ClkInitStruct->APB1CLKDivider = LL_RCC_GetAPB1Prescaler(); + + /* Get the APB2 configuration ----------------------------------------------*/ + RCC_ClkInitStruct->APB2CLKDivider = LL_RCC_GetAPB2Prescaler(); + + /* Get the AHBCLK2Divider configuration ------------------------------------*/ + RCC_ClkInitStruct->AHBCLK2Divider = LL_C2_RCC_GetAHBPrescaler(); + + /* Get the AHBCLK4Divider configuration ------------------------------------*/ + RCC_ClkInitStruct->AHBCLK4Divider = LL_RCC_GetAHB4Prescaler(); + + /* Get the Flash Wait State (Latency) configuration ------------------------*/ + *pFLatency = __HAL_FLASH_GET_LATENCY(); +} + +/** + * @brief Enable the Clock Security System. + * @note If a failure is detected on the HSE oscillator clock, this oscillator + * is automatically disabled and an interrupt is generated to inform the + * software about the failure (Clock Security System Interrupt, CSSI), + * allowing the MCU to perform rescue operations. The CSSI is linked to + * CPU1 and CPU2 NMI (Non-Maskable Interrupt) exception vector. + * @note The Clock Security System can only be cleared by reset. + * @retval None + */ +void HAL_RCC_EnableCSS(void) +{ + LL_RCC_HSE_EnableCSS(); +} + +/** + * @brief Handle the RCC HSE Clock Security System interrupt request. + * @note This API should be called under the NMI_Handler(). + * @retval None + */ +void HAL_RCC_NMI_IRQHandler(void) +{ + /* Check RCC CSSF interrupt flag */ + if (__HAL_RCC_GET_IT(RCC_IT_HSECSS)) + { + /* RCC Clock Security System interrupt user callback */ + HAL_RCC_CSSCallback(); + + /* Clear RCC CSS pending bit */ + __HAL_RCC_CLEAR_IT(RCC_IT_HSECSS); + } +} + +/** + * @brief Handle the RCC HSE Clock Security System interrupt callback. + * @retval none + */ +__weak void HAL_RCC_CSSCallback(void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the @ref HAL_RCC_CSSCallback should be implemented in the user file + */ +} + +/** + * @brief Get and clear reset flags + * @param None + * @note Once reset flags are retrieved, this API is clearing them in order + * to isolate next reset reason. + * @retval can be a combination of @ref RCC_Reset_Flag + */ +uint32_t HAL_RCC_GetResetSource(void) +{ + uint32_t reset; + + /* Get all reset flags */ + reset = RCC->CSR & RCC_RESET_FLAG_ALL; + + /* Clear Reset flags */ + RCC->CSR |= RCC_CSR_RMVF; + + return reset; +} + +/** + * @} + */ + +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup RCC_Private_Functions + * @{ + */ + +/** + * @brief Update number of Flash wait states in line with MSI range and current + voltage range. + * @param MSI_Range MSI range value from @ref RCC_MSIRANGE_0 to @ref RCC_MSIRANGE_11 + * @retval HAL status + */ +static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t MSI_Range) +{ + uint32_t flash_clksrcfreq; + uint32_t msifreq; + + /* Check the parameters */ + assert_param(IS_RCC_MSI_CLOCK_RANGE(MSI_Range)); + + /* MSI frequency range in Hz */ + if (MSI_Range > RCC_MSIRANGE_11) + { + msifreq = __LL_RCC_CALC_MSI_FREQ(RCC_MSIRANGE_11); + } + else + { + msifreq = __LL_RCC_CALC_MSI_FREQ(MSI_Range); + } + + flash_clksrcfreq = __LL_RCC_CALC_HCLK4_FREQ(msifreq, LL_RCC_GetAHB4Prescaler()); + +#if defined(PWR_CR1_VOS) + return RCC_SetFlashLatency((flash_clksrcfreq / MEGA_HZ), HAL_PWREx_GetVoltageRange()); +#else + return RCC_SetFlashLatency((flash_clksrcfreq / MEGA_HZ), PWR_REGULATOR_VOLTAGE_SCALE1); +#endif /* PWR_CR1_VOS */ +} + + +/** + * @brief Update number of Flash wait states. + * @param Flash_ClkSrcFreq Flash Clock Source (in MHz) + * @param VCORE_Voltage Current Vcore voltage (PWR_REGULATOR_VOLTAGE_SCALE1 or PWR_REGULATOR_VOLTAGE_SCALE2) + * @retval HAL status + */ +static HAL_StatusTypeDef RCC_SetFlashLatency(uint32_t Flash_ClkSrcFreq, uint32_t VCORE_Voltage) +{ + /* Flash Clock source (HCLK4) range in MHz with a VCORE is range1 */ + const uint32_t FLASH_CLK_SRC_RANGE_VOS1[] = {18UL, 36UL, 54UL, 64UL}; +#if defined(PWR_CR1_VOS) + /* Flash Clock source (HCLK4) range in MHz with a VCORE is range2 */ + const uint32_t FLASH_CLK_SRC_RANGE_VOS2[] = {6UL, 12UL, 16UL}; +#endif /* PWR_CR1_VOS */ + /* Flash Latency range */ + const uint32_t FLASH_LATENCY_RANGE[] = {FLASH_LATENCY_0, FLASH_LATENCY_1, FLASH_LATENCY_2, FLASH_LATENCY_3}; + uint32_t latency = FLASH_LATENCY_0; /* default value 0WS */ + uint32_t tickstart; + +#if defined(PWR_CR1_VOS) + if (VCORE_Voltage == PWR_REGULATOR_VOLTAGE_SCALE1) + { + for (uint32_t index = 0; index < __COUNTOF(FLASH_CLK_SRC_RANGE_VOS1); index++) + { + if (Flash_ClkSrcFreq <= FLASH_CLK_SRC_RANGE_VOS1[index]) + { + latency = FLASH_LATENCY_RANGE[index]; + break; + } + } + } + else /* PWR_REGULATOR_VOLTAGE_SCALE2 */ + { + for (uint32_t index = 0; index < __COUNTOF(FLASH_CLK_SRC_RANGE_VOS2); index++) + { + if (Flash_ClkSrcFreq <= FLASH_CLK_SRC_RANGE_VOS2[index]) + { + latency = FLASH_LATENCY_RANGE[index]; + break; + } + } + } +#else + for (uint32_t index = 0; index < __COUNTOF(FLASH_CLK_SRC_RANGE_VOS1); index++) + { + if (Flash_ClkSrcFreq <= FLASH_CLK_SRC_RANGE_VOS1[index]) + { + latency = FLASH_LATENCY_RANGE[index]; + break; + } + } +#endif /* PWR_CR1_VOS */ + + __HAL_FLASH_SET_LATENCY(latency); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Check that the new number of wait states is taken into account to access the Flash + memory by reading the FLASH_ACR register */ + while (__HAL_FLASH_GET_LATENCY() != latency) + { + if ((HAL_GetTick() - tickstart) > LATENCY_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + return HAL_OK; +} + +/** + * @} + */ + +#endif /* HAL_RCC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rcc_ex.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rcc_ex.c new file mode 100644 index 0000000..8d4148e --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rcc_ex.c @@ -0,0 +1,2328 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_rcc_ex.c + * @author MCD Application Team + * @brief Extended RCC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities RCC extended peripheral: + * + Extended Peripheral Control functions + * + Extended Clock management functions + * + Extended Clock Recovery System Control functions + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @defgroup RCCEx RCCEx + * @brief RCC Extended HAL module driver + * @{ + */ + +#ifdef HAL_RCC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private defines -----------------------------------------------------------*/ +/** @defgroup RCCEx_Private_Constants RCCEx Private Constants + * @{ + */ +#if defined(SAI1) +#define PLLSAI1_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ +#endif /* SAI1 */ +#define PLL_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ + +#define CLOCKSMPS_TIMEOUT_VALUE (5000U) /* 5 s */ + +#define __LSCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() +#define LSCO1_GPIO_PORT GPIOA +#define LSCO1_PIN GPIO_PIN_2 + +#define __LSCO2_CLK_ENABLE() __HAL_RCC_GPIOH_CLK_ENABLE() +#define LSCO2_GPIO_PORT GPIOH +#define LSCO2_PIN GPIO_PIN_3 + +#if defined(RCC_LSCO3_SUPPORT) +#define __LSCO3_CLK_ENABLE() __HAL_RCC_GPIOC_CLK_ENABLE() +#define LSCO3_GPIO_PORT GPIOC +#define LSCO3_PIN GPIO_PIN_12 +#endif /* RCC_LSCO3_SUPPORT */ + +#define LSI2_TIMEOUT_VALUE (3U) /* to be adjusted with DS */ + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup RCCEx_Private_Functions RCCEx Private Functions + * @{ + */ +#if defined(SAI1) +static HAL_StatusTypeDef RCCEx_PLLSAI1_ConfigNP(RCC_PLLSAI1InitTypeDef *PLLSAI1); +static HAL_StatusTypeDef RCCEx_PLLSAI1_ConfigNQ(RCC_PLLSAI1InitTypeDef *PLLSAI1); +static HAL_StatusTypeDef RCCEx_PLLSAI1_ConfigNR(RCC_PLLSAI1InitTypeDef *PLLSAI1); +#endif /* SAI1 */ + +static uint32_t RCC_PLL_GetFreqDomain_P(void); +static uint32_t RCC_PLL_GetFreqDomain_Q(void); + +#if defined(SAI1) +static uint32_t RCC_PLLSAI1_GetFreqDomain_R(void); +static uint32_t RCC_PLLSAI1_GetFreqDomain_P(void); +static uint32_t RCC_PLLSAI1_GetFreqDomain_Q(void); +#endif /* SAI1 */ + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions + * @{ + */ + +/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions + * @brief Extended Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Extended Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the RCC Clocks + frequencies. + [..] + (@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to + select the RTC clock source; in this case the Backup domain will be reset in + order to modify the RTC Clock source, as consequence RTC registers (including + the backup registers) and RCC_BDCR register are set to their reset values. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the RCC extended peripherals clocks according to the specified + * parameters in the @ref RCC_PeriphCLKInitTypeDef. + * @param PeriphClkInit pointer to a @ref RCC_PeriphCLKInitTypeDef structure that + * contains a field PeriphClockSelection which can be a combination of the following values: + * + * @arg @ref RCC_PERIPHCLK_USART1 USART1 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPUART1 LPUART1 peripheral clock + * @arg @ref RCC_PERIPHCLK_I2C1 I2C1 peripheral clock + * @arg @ref RCC_PERIPHCLK_I2C3 I2C3 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPTIM1 LPTIM1 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPTIM2 LPTIM2 peripheral clock + * @arg @ref RCC_PERIPHCLK_SAI1 SAI1 peripheral clock + * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock + * @arg @ref RCC_PERIPHCLK_RNG RNG peripheral clock + * @arg @ref RCC_PERIPHCLK_ADC ADC peripheral clock + * @arg @ref RCC_PERIPHCLK_RTC RTC peripheral clock + * @arg @ref RCC_PERIPHCLK_RFWAKEUP RFWKP peripheral clock + * @arg @ref RCC_PERIPHCLK_SMPS SMPS peripheral clock + * + * + * @note Care must be taken when @ref HAL_RCCEx_PeriphCLKConfig() is used to select + * the RTC clock source: in this case the access to Backup domain is enabled. + * + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) +{ + uint32_t tickstart; + HAL_StatusTypeDef ret = HAL_OK; /* Intermediate status */ + HAL_StatusTypeDef status = HAL_OK; /* Final status */ + + /* Check the parameters */ + assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection)); + +#if defined(SAI1) + /*-------------------------- SAI1 clock source configuration ---------------------*/ + if ((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI1) == RCC_PERIPHCLK_SAI1)) + { + /* Check the parameters */ + assert_param(IS_RCC_SAI1CLK(PeriphClkInit->Sai1ClockSelection)); + + switch (PeriphClkInit->Sai1ClockSelection) + { + case RCC_SAI1CLKSOURCE_PLL: /* PLL is used as clock source for SAI1 */ + /* Enable SAI1 Clock output generated form System PLL . */ + __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SAI1CLK); + + /* SAI1 clock source config set later after clock selection check */ + break; + + case RCC_SAI1CLKSOURCE_PLLSAI1: /* PLLSAI1 is used as clock source for SAI1 */ + /* PLLSAI1 parameters N & P configuration and clock output (PLLSAI1ClockOut) */ + ret = RCCEx_PLLSAI1_ConfigNP(&(PeriphClkInit->PLLSAI1)); + /* SAI1 clock source config set later after clock selection check */ + break; + + case RCC_SAI1CLKSOURCE_PIN: /* External clock is used as source of SAI1 clock*/ + /* SAI1 clock source config set later after clock selection check */ + break; + + case RCC_SAI1CLKSOURCE_HSI: + + break; + + default: + ret = HAL_ERROR; + break; + } + + if (ret == HAL_OK) + { + /* Set the source of SAI1 clock*/ + __HAL_RCC_SAI1_CONFIG(PeriphClkInit->Sai1ClockSelection); + } + else + { + /* set overall return value */ + status = ret; + } + } +#endif /* SAI1 */ + + /*-------------------------- RTC clock source configuration ----------------------*/ + if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC) + { + uint32_t rtcclocksource = LL_RCC_GetRTCClockSource(); + + /* Check for RTC Parameters used to output RTCCLK */ + assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection)); + + /* Configure the clock source only if a different source is expected */ + if (rtcclocksource != PeriphClkInit->RTCClockSelection) + { + /* Enable write access to Backup domain */ + HAL_PWR_EnableBkUpAccess(); + + /* If a clock source is not yet selected */ + if (rtcclocksource == RCC_RTCCLKSOURCE_NONE) + { + /* Directly set the configuration of the clock source selection */ + LL_RCC_SetRTCClockSource(PeriphClkInit->RTCClockSelection); + } + else /* A clock source is already selected */ + { + /* Store the content of BDCR register before the reset of Backup Domain */ + uint32_t bdcr = LL_RCC_ReadReg(BDCR); + + /* RTC Clock selection can be changed only if the Backup Domain is reset */ + LL_RCC_ForceBackupDomainReset(); + LL_RCC_ReleaseBackupDomainReset(); + + /* Set the value of the clock source selection */ + MODIFY_REG(bdcr, RCC_BDCR_RTCSEL, PeriphClkInit->RTCClockSelection); + + /* Restore the content of BDCR register */ + LL_RCC_WriteReg(BDCR, bdcr); + + /* Wait for LSE reactivation if LSE was enable prior to Backup Domain reset */ + if (LL_RCC_LSE_IsEnabled() == 1U) + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while (LL_RCC_LSE_IsReady() != 1U) + { + if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) + { + ret = HAL_TIMEOUT; + break; + } + } + } + } + + /* set overall return value */ + status = ret; + } + else + { + /* set overall return value */ + status = ret; + } + + } + + /*-------------------------- USART1 clock source configuration -------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1) + { + /* Check the parameters */ + assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection)); + + /* Configure the USART1 clock source */ + __HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection); + } + +#if defined(LPUART1) + /*-------------------------- LPUART1 clock source configuration ------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPUART1) == RCC_PERIPHCLK_LPUART1) + { + /* Check the parameters */ + assert_param(IS_RCC_LPUART1CLKSOURCE(PeriphClkInit->Lpuart1ClockSelection)); + + /* Configure the LPUAR1 clock source */ + __HAL_RCC_LPUART1_CONFIG(PeriphClkInit->Lpuart1ClockSelection); + } +#endif /* LPUART1 */ + + /*-------------------------- LPTIM1 clock source configuration -------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM1) == (RCC_PERIPHCLK_LPTIM1)) + { + assert_param(IS_RCC_LPTIM1CLK(PeriphClkInit->Lptim1ClockSelection)); + __HAL_RCC_LPTIM1_CONFIG(PeriphClkInit->Lptim1ClockSelection); + } + + /*-------------------------- LPTIM2 clock source configuration -------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM2) == (RCC_PERIPHCLK_LPTIM2)) + { + assert_param(IS_RCC_LPTIM2CLK(PeriphClkInit->Lptim2ClockSelection)); + __HAL_RCC_LPTIM2_CONFIG(PeriphClkInit->Lptim2ClockSelection); + } + + /*-------------------------- I2C1 clock source configuration ---------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1) + { + /* Check the parameters */ + assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection)); + + /* Configure the I2C1 clock source */ + __HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection); + } + +#if defined(I2C3) + /*-------------------------- I2C3 clock source configuration ---------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C3) == RCC_PERIPHCLK_I2C3) + { + /* Check the parameters */ + assert_param(IS_RCC_I2C3CLKSOURCE(PeriphClkInit->I2c3ClockSelection)); + + /* Configure the I2C3 clock source */ + __HAL_RCC_I2C3_CONFIG(PeriphClkInit->I2c3ClockSelection); + } +#endif /* I2C3 */ + +#if defined(USB) + /*-------------------------- USB clock source configuration ----------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == (RCC_PERIPHCLK_USB)) + { + assert_param(IS_RCC_USBCLKSOURCE(PeriphClkInit->UsbClockSelection)); + __HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection); + + if (PeriphClkInit->UsbClockSelection == RCC_USBCLKSOURCE_PLL) + { + /* Enable PLLQ output */ + __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_USBCLK); + } +#if defined(SAI1) + if (PeriphClkInit->UsbClockSelection == RCC_USBCLKSOURCE_PLLSAI1) + { + /* PLLSAI1 parameters N & Q configuration and clock output (PLLSAI1ClockOut) */ + ret = RCCEx_PLLSAI1_ConfigNQ(&(PeriphClkInit->PLLSAI1)); + + if (ret != HAL_OK) + { + /* set overall return value */ + status = ret; + } + } +#endif /* SAI1 */ + } +#endif /* USB */ + + /*-------------------------- RNG clock source configuration ----------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RNG) == (RCC_PERIPHCLK_RNG)) + { + /* Check the parameters */ + assert_param(IS_RCC_RNGCLKSOURCE(PeriphClkInit->RngClockSelection)); + + /* Configure the RNG clock source */ + __HAL_RCC_RNG_CONFIG(PeriphClkInit->RngClockSelection); + + if (PeriphClkInit->RngClockSelection == RCC_RNGCLKSOURCE_PLL) + { + /* Enable PLLQ output */ + __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_RNGCLK); + } + } + + /*-------------------------- ADC clock source configuration ----------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_ADC) == RCC_PERIPHCLK_ADC) + { + /* Check the parameters */ + assert_param(IS_RCC_ADCCLKSOURCE(PeriphClkInit->AdcClockSelection)); + + /* Configure the ADC interface clock source */ + __HAL_RCC_ADC_CONFIG(PeriphClkInit->AdcClockSelection); + + if (PeriphClkInit->AdcClockSelection == RCC_ADCCLKSOURCE_PLL) + { + /* Enable RCC_PLL_RNGCLK output */ + __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_ADCCLK); + } + +#if defined(SAI1) + if (PeriphClkInit->AdcClockSelection == RCC_ADCCLKSOURCE_PLLSAI1) + { + /* PLLSAI1 parameters N & R configuration and clock output (PLLSAI1ClockOut) */ + ret = RCCEx_PLLSAI1_ConfigNR(&(PeriphClkInit->PLLSAI1)); + + if (ret != HAL_OK) + { + /* set overall return value */ + status = ret; + } + } +#endif /* SAI1 */ + } + + /*-------------------------- RFWKP clock source configuration ----------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RFWAKEUP) == RCC_PERIPHCLK_RFWAKEUP) + { + /* Check the parameters */ + assert_param(IS_RCC_RFWKPCLKSOURCE(PeriphClkInit->RFWakeUpClockSelection)); + + /* Configure the RFWKP interface clock source */ + __HAL_RCC_RFWAKEUP_CONFIG(PeriphClkInit->RFWakeUpClockSelection); + + } + +#if defined(RCC_SMPS_SUPPORT) + /*-------------------------- SMPS clock source configuration ----------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SMPS) == RCC_PERIPHCLK_SMPS) + { + /* Check the parameters */ + assert_param(IS_RCC_SMPSCLKDIV(PeriphClkInit->SmpsDivSelection)); + assert_param(IS_RCC_SMPSCLKSOURCE(PeriphClkInit->SmpsClockSelection)); + + /* Configure the SMPS interface clock division factor */ + __HAL_RCC_SMPS_DIV_CONFIG(PeriphClkInit->SmpsDivSelection); + + /* Configure the SMPS interface clock source */ + __HAL_RCC_SMPS_CONFIG(PeriphClkInit->SmpsClockSelection); + } +#endif /* RCC_SMPS_SUPPORT */ + + return status; +} + + +/** + * @brief Get the RCC_ClkInitStruct according to the internal RCC configuration registers. + * @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that + * returns the configuration information for the Extended Peripherals + * clocks(SAI1, LPTIM1, LPTIM2, I2C1, I2C3, LPUART1, + * USART1, RTC, ADCx, USB, RNG, RFWKP, SMPS). + * @retval None + */ +void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) +{ + /* Set all possible values for the extended clock type parameter------------*/ + + PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_I2C1 | \ + RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM2 | \ + RCC_PERIPHCLK_RNG | RCC_PERIPHCLK_ADC | \ + RCC_PERIPHCLK_RTC | RCC_PERIPHCLK_RFWAKEUP; +#if defined(LPUART1) + PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_LPUART1; +#endif /* LPUART1 */ + +#if defined(I2C3) + PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_I2C3; +#endif /* I2C3 */ + +#if defined(SAI1) + PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_SAI1; +#endif /* SAI1 */ + +#if defined(USB) + PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USB; +#endif /* USB */ + +#if defined(RCC_SMPS_SUPPORT) + PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_SMPS; +#endif /* RCC_SMPS_SUPPORT */ + + +#if defined(SAI1) + /* Get the PLLSAI1 Clock configuration -----------------------------------------------*/ + PeriphClkInit->PLLSAI1.PLLN = LL_RCC_PLLSAI1_GetN(); + PeriphClkInit->PLLSAI1.PLLP = LL_RCC_PLLSAI1_GetP(); + PeriphClkInit->PLLSAI1.PLLR = LL_RCC_PLLSAI1_GetR(); + PeriphClkInit->PLLSAI1.PLLQ = LL_RCC_PLLSAI1_GetQ(); +#endif /* SAI1 */ + + /* Get the USART1 clock source ---------------------------------------------*/ + PeriphClkInit->Usart1ClockSelection = __HAL_RCC_GET_USART1_SOURCE(); + +#if defined(LPUART1) + /* Get the LPUART1 clock source --------------------------------------------*/ + PeriphClkInit->Lpuart1ClockSelection = __HAL_RCC_GET_LPUART1_SOURCE(); +#endif /* LPUART1 */ + + /* Get the I2C1 clock source -----------------------------------------------*/ + PeriphClkInit->I2c1ClockSelection = __HAL_RCC_GET_I2C1_SOURCE(); + +#if defined(I2C3) + /* Get the I2C3 clock source -----------------------------------------------*/ + PeriphClkInit->I2c3ClockSelection = __HAL_RCC_GET_I2C3_SOURCE(); +#endif /* I2C3 */ + + /* Get the LPTIM1 clock source ---------------------------------------------*/ + PeriphClkInit->Lptim1ClockSelection = __HAL_RCC_GET_LPTIM1_SOURCE(); + + /* Get the LPTIM2 clock source ---------------------------------------------*/ + PeriphClkInit->Lptim2ClockSelection = __HAL_RCC_GET_LPTIM2_SOURCE(); + +#if defined(SAI1) + /* Get the SAI1 clock source -----------------------------------------------*/ + PeriphClkInit->Sai1ClockSelection = __HAL_RCC_GET_SAI1_SOURCE(); +#endif /* SAI1 */ + + /* Get the RTC clock source ------------------------------------------------*/ + PeriphClkInit->RTCClockSelection = __HAL_RCC_GET_RTC_SOURCE(); + +#if defined(USB) + /* Get the USB clock source ------------------------------------------------*/ + PeriphClkInit->UsbClockSelection = __HAL_RCC_GET_USB_SOURCE(); +#endif /* USB */ + + /* Get the RNG clock source ------------------------------------------------*/ + PeriphClkInit->RngClockSelection = HAL_RCCEx_GetRngCLKSource(); + + /* Get the ADC clock source ------------------------------------------------*/ + PeriphClkInit->AdcClockSelection = __HAL_RCC_GET_ADC_SOURCE(); + + /* Get the RFWKP clock source ----------------------------------------------*/ + PeriphClkInit->RFWakeUpClockSelection = __HAL_RCC_GET_RFWAKEUP_SOURCE(); + +#if defined(RCC_SMPS_SUPPORT) + /* Get the SMPS clock division factor --------------------------------------*/ + PeriphClkInit->SmpsDivSelection = __HAL_RCC_GET_SMPS_DIV(); + + /* Get the SMPS clock source -----------------------------------------------*/ + PeriphClkInit->SmpsClockSelection = __HAL_RCC_GET_SMPS_SOURCE(); +#endif /* RCC_SMPS_SUPPORT */ + +} + +/** + * @brief Return the peripheral clock frequency for peripherals with clock source + * @note Return 0 if peripheral clock identifier not managed by this API + * @param PeriphClk Peripheral clock identifier + * This parameter can be one of the following values: + * @arg @ref RCC_PERIPHCLK_RTC RTC peripheral clock + * @arg @ref RCC_PERIPHCLK_ADC ADC peripheral clock + * @arg @ref RCC_PERIPHCLK_I2C1 I2C1 peripheral clock + * @arg @ref RCC_PERIPHCLK_I2C3 I2C3 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPTIM1 LPTIM1 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPTIM2 LPTIM2 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPUART1 LPUART1 peripheral clock + * @arg @ref RCC_PERIPHCLK_RNG RNG peripheral clock + * @arg @ref RCC_PERIPHCLK_SAI1 SAI1 peripheral clock + * @arg @ref RCC_PERIPHCLK_USART1 USART1 peripheral clock + * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock + * @arg @ref RCC_PERIPHCLK_RFWAKEUP RFWKP peripheral clock + * @arg @ref RCC_PERIPHCLK_SMPS SMPS peripheral clock + * @retval Frequency in Hz + */ +uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk) +{ + uint32_t frequency = 0U; + +#if defined(RCC_SMPS_SUPPORT) + uint32_t smps_prescaler_index = ((LL_RCC_GetSMPSPrescaler()) >> RCC_SMPSCR_SMPSDIV_Pos); +#endif /* RCC_SMPS_SUPPORT */ + + /* Check the parameters */ + assert_param(IS_RCC_PERIPHCLOCK(PeriphClk)); + + if (PeriphClk == RCC_PERIPHCLK_RTC) + { + uint32_t rtcClockSource = LL_RCC_GetRTCClockSource(); + + if (rtcClockSource == LL_RCC_RTC_CLKSOURCE_LSE) /* LSE clock used as RTC clock source */ + { + if (LL_RCC_LSE_IsReady() == 1U) + { + frequency = LSE_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + } + else if (rtcClockSource == LL_RCC_RTC_CLKSOURCE_LSI) /* LSI clock used as RTC clock source */ + { + const uint32_t temp_lsi1ready = LL_RCC_LSI1_IsReady(); + const uint32_t temp_lsi2ready = LL_RCC_LSI2_IsReady(); + if ((temp_lsi1ready == 1U) || (temp_lsi2ready == 1U)) + { + frequency = LSI_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + } + else if (rtcClockSource == LL_RCC_RTC_CLKSOURCE_HSE_DIV32) /* HSE clock used as RTC clock source */ + { + frequency = HSE_VALUE / 32U; + } + else /* No clock used as RTC clock source */ + { + /* Nothing to do as frequency already initialized to 0U */ + } + } +#if defined(SAI1) + else if (PeriphClk == RCC_PERIPHCLK_SAI1) + { + switch (LL_RCC_GetSAIClockSource(LL_RCC_SAI1_CLKSOURCE)) + { + case LL_RCC_SAI1_CLKSOURCE_HSI: /* HSI clock used as SAI1 clock source */ + if (LL_RCC_HSI_IsReady() == 1U) + { + frequency = HSI_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + break; + + case LL_RCC_SAI1_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as SAI1 clock source */ + if (LL_RCC_PLLSAI1_IsReady() == 1U) + { + frequency = RCC_PLLSAI1_GetFreqDomain_P(); + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + break; + + case LL_RCC_SAI1_CLKSOURCE_PLL: /* PLL clock used as SAI1 clock source */ + if (LL_RCC_PLL_IsReady() == 1U) + { + frequency = RCC_PLL_GetFreqDomain_P(); + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + break; + + default: /* External input clock used as SAI1 clock source */ + frequency = EXTERNAL_SAI1_CLOCK_VALUE; + break; + } + } +#endif /* SAI1 */ + else if (PeriphClk == RCC_PERIPHCLK_RNG) + { + uint32_t rngClockSource = HAL_RCCEx_GetRngCLKSource(); + + if (rngClockSource == RCC_RNGCLKSOURCE_LSI) /* LSI clock used as RNG clock source */ + { + const uint32_t temp_lsi1ready = LL_RCC_LSI1_IsReady(); + const uint32_t temp_lsi2ready = LL_RCC_LSI2_IsReady(); + if ((temp_lsi1ready == 1U) || (temp_lsi2ready == 1U)) + { + frequency = LSI_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + } + else if (rngClockSource == RCC_RNGCLKSOURCE_LSE) /* LSE clock used as RNG clock source */ + { + if (LL_RCC_LSE_IsReady() == 1U) + { + frequency = LSE_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + } + else if (rngClockSource == RCC_RNGCLKSOURCE_PLL) /* PLL clock divided by 3 used as RNG clock source */ + { + if (LL_RCC_PLL_IsReady() == 1U) + { + frequency = (RCC_PLL_GetFreqDomain_Q() / 3U); + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + } + else if (rngClockSource == RCC_RNGCLKSOURCE_MSI) /* MSI clock divided by 3 used as RNG clock source */ + { + if (LL_RCC_MSI_IsReady() == 1U) + { + frequency = (__LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()) / 3U); + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + } +#if defined(SAI1) + else if (rngClockSource == RCC_RNGCLKSOURCE_PLLSAI1) /* PLLSAI1 clock used as SAI1 clock source */ + { + if (LL_RCC_PLLSAI1_IsReady() == 1U) + { + frequency = RCC_PLLSAI1_GetFreqDomain_Q(); + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + } +#endif /* SAI1 */ + else /* HSI48 clock divided by 3 used as RNG clock source */ + { +#if defined(RCC_HSI48_SUPPORT) + if (LL_RCC_HSI48_IsReady() == 1U) + { + frequency = HSI48_VALUE / 3U; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } +#else + /* Nothing to do as frequency already initialized to 0U */ +#endif /* RCC_HSI48_SUPPORT */ + } + } +#if defined(USB) + else if (PeriphClk == RCC_PERIPHCLK_USB) + { + switch (LL_RCC_GetUSBClockSource(LL_RCC_USB_CLKSOURCE)) + { +#if defined(SAI1) + case LL_RCC_USB_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as USB clock source */ + if (LL_RCC_PLLSAI1_IsReady() == 1U) + { + frequency = RCC_PLLSAI1_GetFreqDomain_Q(); + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + break; +#endif /* SAI1 */ + + case LL_RCC_USB_CLKSOURCE_PLL: /* PLL clock used as USB clock source */ + if (LL_RCC_PLL_IsReady() == 1U) + { + frequency = RCC_PLL_GetFreqDomain_Q(); + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + break; + + case LL_RCC_USB_CLKSOURCE_MSI: /* MSI clock used as USB clock source */ + if (LL_RCC_MSI_IsReady() == 1U) + { + frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + break; + + default: /* HSI48 clock used as USB clock source */ + if (LL_RCC_HSI48_IsReady() == 1U) + { + frequency = HSI48_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + break; + } + } +#endif /* USB */ + else if (PeriphClk == RCC_PERIPHCLK_USART1) + { + switch (LL_RCC_GetUSARTClockSource(LL_RCC_USART1_CLKSOURCE)) + { + case LL_RCC_USART1_CLKSOURCE_SYSCLK: /* USART1 Clock is System Clock */ + frequency = HAL_RCC_GetSysClockFreq(); + break; + + case LL_RCC_USART1_CLKSOURCE_HSI: /* USART1 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady() == 1U) + { + frequency = HSI_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + break; + + case LL_RCC_USART1_CLKSOURCE_LSE: /* USART1 Clock is LSE Osc. */ + if (LL_RCC_LSE_IsReady() == 1U) + { + frequency = LSE_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + break; + + default: /* USART1 Clock is PCLK2 */ + frequency = __LL_RCC_CALC_PCLK2_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), + LL_RCC_GetAHBPrescaler()), + LL_RCC_GetAPB2Prescaler()); + break; + } + } +#if defined(LPUART1) + else if (PeriphClk == RCC_PERIPHCLK_LPUART1) + { + switch (LL_RCC_GetLPUARTClockSource(LL_RCC_LPUART1_CLKSOURCE)) + { + case LL_RCC_LPUART1_CLKSOURCE_SYSCLK: /* LPUART1 Clock is System Clock */ + frequency = HAL_RCC_GetSysClockFreq(); + break; + + case LL_RCC_LPUART1_CLKSOURCE_HSI: /* LPUART1 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady() == 1U) + { + frequency = HSI_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + break; + + case LL_RCC_LPUART1_CLKSOURCE_LSE: /* LPUART1 Clock is LSE Osc. */ + if (LL_RCC_LSE_IsReady() == 1U) + { + frequency = LSE_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + break; + + default: /* LPUART1 Clock is PCLK1 */ + frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), + LL_RCC_GetAHBPrescaler()), + LL_RCC_GetAPB1Prescaler()); + break; + } + } +#endif /* LPUART1 */ + else if (PeriphClk == RCC_PERIPHCLK_ADC) + { + switch (LL_RCC_GetADCClockSource(LL_RCC_ADC_CLKSOURCE)) + { +#if defined(STM32WB55xx) || defined (STM32WB5Mxx) || defined(STM32WB35xx) + case LL_RCC_ADC_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as ADC clock source */ + if (LL_RCC_PLLSAI1_IsReady() == 1U) + { + frequency = RCC_PLLSAI1_GetFreqDomain_R(); + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + break; +#elif defined(STM32WB15xx) || defined(STM32WB1Mxx) + case LL_RCC_ADC_CLKSOURCE_HSI: /* HSI clock used as ADC clock source */ + if (LL_RCC_HSI_IsReady() == 1U) + { + frequency = HSI_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + break; +#endif /* STM32WB55xx || STM32WB5Mxx || STM32WB35xx */ + case LL_RCC_ADC_CLKSOURCE_SYSCLK: /* SYSCLK clock used as ADC clock source */ + frequency = HAL_RCC_GetSysClockFreq(); + break; + case LL_RCC_ADC_CLKSOURCE_PLL: /* PLL clock used as ADC clock source */ + if (LL_RCC_PLL_IsReady() == 1U) + { + frequency = RCC_PLL_GetFreqDomain_P(); + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + break; + + default: /* No clock used as ADC clock source */ + break; + } + } + else if (PeriphClk == RCC_PERIPHCLK_I2C1) + { + switch (LL_RCC_GetI2CClockSource(LL_RCC_I2C1_CLKSOURCE)) + { + case LL_RCC_I2C1_CLKSOURCE_SYSCLK: /* I2C1 Clock is System Clock */ + frequency = HAL_RCC_GetSysClockFreq(); + break; + + case LL_RCC_I2C1_CLKSOURCE_HSI: /* I2C1 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady() == 1U) + { + frequency = HSI_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + break; + + default: /* I2C1 Clock is PCLK1 */ + frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), + LL_RCC_GetAHBPrescaler()), + LL_RCC_GetAPB1Prescaler()); + break; + } + } +#if defined(I2C3) + else if (PeriphClk == RCC_PERIPHCLK_I2C3) + { + switch (LL_RCC_GetI2CClockSource(LL_RCC_I2C3_CLKSOURCE)) + { + case LL_RCC_I2C3_CLKSOURCE_SYSCLK: /* I2C3 Clock is System Clock */ + frequency = HAL_RCC_GetSysClockFreq(); + break; + + case LL_RCC_I2C3_CLKSOURCE_HSI: /* I2C3 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady() == 1U) + { + frequency = HSI_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + break; + + default: /* I2C3 Clock is PCLK1 */ + frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), + LL_RCC_GetAHBPrescaler()), + LL_RCC_GetAPB1Prescaler()); + break; + } + } +#endif /* I2C3 */ + else if (PeriphClk == RCC_PERIPHCLK_LPTIM1) + { + uint32_t lptimClockSource = LL_RCC_GetLPTIMClockSource(LL_RCC_LPTIM1_CLKSOURCE); + + if (lptimClockSource == LL_RCC_LPTIM1_CLKSOURCE_LSI) /* LPTIM1 Clock is LSI Osc. */ + { + const uint32_t temp_lsi1ready = LL_RCC_LSI1_IsReady(); + const uint32_t temp_lsi2ready = LL_RCC_LSI2_IsReady(); + if ((temp_lsi1ready == 1U) || (temp_lsi2ready == 1U)) + { + frequency = LSI_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + } + else if (lptimClockSource == LL_RCC_LPTIM1_CLKSOURCE_HSI) /* LPTIM1 Clock is HSI Osc. */ + { + if (LL_RCC_HSI_IsReady() == 1U) + { + frequency = HSI_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + } + else if (lptimClockSource == LL_RCC_LPTIM1_CLKSOURCE_LSE) /* LPTIM1 Clock is LSE Osc. */ + { + if (LL_RCC_LSE_IsReady() == 1U) + { + frequency = LSE_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + } + else /* LPTIM1 Clock is PCLK1 */ + { + frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), + LL_RCC_GetAHBPrescaler()), + LL_RCC_GetAPB1Prescaler()); + } + } + else if (PeriphClk == RCC_PERIPHCLK_LPTIM2) + { + uint32_t lptimClockSource = LL_RCC_GetLPTIMClockSource(LL_RCC_LPTIM2_CLKSOURCE); + + if (lptimClockSource == LL_RCC_LPTIM2_CLKSOURCE_LSI) /* LPTIM2 Clock is LSI Osc. */ + { + const uint32_t temp_lsi1ready = LL_RCC_LSI1_IsReady(); + const uint32_t temp_lsi2ready = LL_RCC_LSI2_IsReady(); + if ((temp_lsi1ready == 1U) || (temp_lsi2ready == 1U)) + { + frequency = LSI_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + } + else if (lptimClockSource == LL_RCC_LPTIM2_CLKSOURCE_HSI) /* LPTIM2 Clock is HSI Osc. */ + { + if (LL_RCC_HSI_IsReady() == 1U) + { + frequency = HSI_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + } + else if (lptimClockSource == LL_RCC_LPTIM2_CLKSOURCE_LSE) /* LPTIM2 Clock is LSE Osc. */ + { + if (LL_RCC_LSE_IsReady() == 1U) + { + frequency = LSE_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + } + else /* LPTIM2 Clock is PCLK1 */ + { + frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), + LL_RCC_GetAHBPrescaler()), + LL_RCC_GetAPB1Prescaler()); + } + } + else if (PeriphClk == RCC_PERIPHCLK_RFWAKEUP) + { + uint32_t rfwkpClockSource = LL_RCC_GetRFWKPClockSource(); + + if (rfwkpClockSource == LL_RCC_RFWKP_CLKSOURCE_LSE) /* LSE clock used as RF Wakeup clock source */ + { + if (LL_RCC_LSE_IsReady() == 1U) + { + frequency = LSE_VALUE; + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + } + else if (rfwkpClockSource == LL_RCC_RFWKP_CLKSOURCE_HSE_DIV1024) /* HSE clock used as RF Wakeup clock source */ + { + frequency = HSE_VALUE / 1024U; + } + else /* No clock used as RF Wakeup clock source */ + { + /* Nothing to do as frequency already initialized to 0U */ + } + } +#if defined(RCC_SMPS_SUPPORT) + else if (PeriphClk == RCC_PERIPHCLK_SMPS) + { + uint32_t smpsClockSource = LL_RCC_GetSMPSClockSource(); + + if (smpsClockSource == LL_RCC_SMPS_CLKSOURCE_STATUS_HSI) /* SMPS Clock source is HSI Osc. */ + { + if (LL_RCC_HSI_IsReady() == 1U) + { + frequency = HSI_VALUE / SmpsPrescalerTable[smps_prescaler_index][0]; + frequency = frequency >> 1U; /* Systematic Div by 2 */ + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + } + else if (smpsClockSource == LL_RCC_SMPS_CLKSOURCE_STATUS_HSE) /* SMPS Clock source is HSE Osc. */ + { + if (LL_RCC_HSE_IsReady() == 1U) + { + frequency = HSE_VALUE / SmpsPrescalerTable[smps_prescaler_index][5]; + frequency = frequency >> 1U; /* Systematic Div by 2 */ + } + else + { + /* Nothing to do as frequency already initialized to 0U */ + } + } + else if (smpsClockSource == LL_RCC_SMPS_CLKSOURCE_STATUS_MSI) /* SMPS Clock source is MSI Osc. */ + { + switch (LL_RCC_MSI_GetRange()) + { + case LL_RCC_MSIRANGE_8: + frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGE_8) / SmpsPrescalerTable[smps_prescaler_index][4]; + break; + case LL_RCC_MSIRANGE_9: + frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGE_9) / SmpsPrescalerTable[smps_prescaler_index][3]; + break; + case LL_RCC_MSIRANGE_10: + frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGE_10) / SmpsPrescalerTable[smps_prescaler_index][2]; + break; + case LL_RCC_MSIRANGE_11: + frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGE_11) / SmpsPrescalerTable[smps_prescaler_index][1]; + break; + default: + break; + } + frequency = frequency >> 1U; /* Systematic Div by 2 */ + } + else /* SMPS has no Clock */ + { + /* Nothing to do as frequency already initialized to 0U */ + } + } +#endif /* RCC_SMPS_SUPPORT */ + + return (frequency); +} + +/** + * @brief Return the RNG clock source + * @retval The RNG clock source can be one of the following values: + * @arg @ref RCC_RNGCLKSOURCE_HSI48 HSI48 clock divided by 3 selected as RNG clock + * @arg @ref RCC_RNGCLKSOURCE_PLL PLL "Q" clock divided by 3 selected as RNG clock + * @arg @ref RCC_RNGCLKSOURCE_MSI MSI clock divided by 3 selected as RNG clock + * @arg @ref RCC_RNGCLKSOURCE_PLLSAI1 PLLSAI1 "Q" clock selected as RNG clock (*) + * @arg @ref RCC_RNGCLKSOURCE_LSI LSI clock selected as RNG clock + * @arg @ref RCC_RNGCLKSOURCE_LSE LSE clock selected as RNG clock + * + * (*) Value not defined in all devices. + * + */ +uint32_t HAL_RCCEx_GetRngCLKSource(void) +{ + uint32_t rng_clock_source = LL_RCC_GetRNGClockSource(LL_RCC_RNG_CLKSOURCE); + uint32_t clk48_clock_source; + + /* RNG clock source originates from 48 MHz RC oscillator */ + if (rng_clock_source == RCC_RNGCLKSOURCE_CLK48) + { + clk48_clock_source = LL_RCC_GetCLK48ClockSource(LL_RCC_CLK48_CLKSOURCE); + rng_clock_source = (CLK48_MASK | clk48_clock_source); + } + + return rng_clock_source; +} + +/** + * @} + */ + +/** @defgroup RCCEx_Exported_Functions_Group2 Extended Clock management functions + * @brief Extended Clock management functions + * +@verbatim + =============================================================================== + ##### Extended clock management functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the + activation or deactivation of MSI PLL-mode, PLLSAI1, PLLSAI12, LSE CSS, + Low speed clock output and clock after wake-up from STOP mode. +@endverbatim + * @{ + */ + +#if defined(SAI1) +/** + * @brief Enable PLLSAI1. + * @param PLLSAI1Init pointer to an RCC_PLLSAI1InitTypeDef structure that + * contains the configuration information for the PLLSAI1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RCCEx_EnablePLLSAI1(RCC_PLLSAI1InitTypeDef *PLLSAI1Init) +{ + uint32_t tickstart; + HAL_StatusTypeDef status = HAL_OK; + + /* check for PLLSAI1 Parameters used to output PLLSAI1CLK */ + assert_param(IS_RCC_PLLN_VALUE(PLLSAI1Init->PLLN)); + assert_param(IS_RCC_PLLP_VALUE(PLLSAI1Init->PLLP)); + assert_param(IS_RCC_PLLQ_VALUE(PLLSAI1Init->PLLQ)); + assert_param(IS_RCC_PLLR_VALUE(PLLSAI1Init->PLLR)); + assert_param(IS_RCC_PLLSAI1CLOCKOUT_VALUE(PLLSAI1Init->PLLSAI1ClockOut)); + + /* Disable the PLLSAI1 */ + __HAL_RCC_PLLSAI1_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLLSAI1 is ready to be updated */ + while (LL_RCC_PLLSAI1_IsReady() != 0U) + { + if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE) + { + status = HAL_TIMEOUT; + break; + } + } + + if (status == HAL_OK) + { + /* Configure the PLLSAI1 Multiplication factor N */ + /* Configure the PLLSAI1 Division factors P, Q and R */ + __HAL_RCC_PLLSAI1_CONFIG(PLLSAI1Init->PLLN, PLLSAI1Init->PLLP, PLLSAI1Init->PLLQ, PLLSAI1Init->PLLR); + /* Configure the PLLSAI1 Clock output(s) */ + __HAL_RCC_PLLSAI1CLKOUT_ENABLE(PLLSAI1Init->PLLSAI1ClockOut); + + /* Enable the PLLSAI1 again by setting PLLSAI1ON to 1*/ + __HAL_RCC_PLLSAI1_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLLSAI1 is ready */ + while (LL_RCC_PLLSAI1_IsReady() != 1U) + { + if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE) + { + status = HAL_TIMEOUT; + break; + } + } + } + + return status; +} + +/** + * @brief Disable PLLSAI1. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RCCEx_DisablePLLSAI1(void) +{ + uint32_t tickstart; + HAL_StatusTypeDef status = HAL_OK; + + /* Disable the PLLSAI1 */ + __HAL_RCC_PLLSAI1_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLLSAI1 is ready */ + while (LL_RCC_PLLSAI1_IsReady() != 0U) + { + if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE) + { + status = HAL_TIMEOUT; + break; + } + } + + /* Disable the PLLSAI1 Clock outputs */ + __HAL_RCC_PLLSAI1CLKOUT_DISABLE(RCC_PLLSAI1_SAI1CLK | RCC_PLLSAI1_USBCLK | RCC_PLLSAI1_ADCCLK); + + return status; +} +#endif /* SAI1 */ + +/***********************************************************************************************/ + +/** + * @brief Configure the oscillator clock source for wakeup from Stop and CSS backup clock. + * @param WakeUpClk Wakeup clock + * This parameter can be one of the following values: + * @arg @ref RCC_STOP_WAKEUPCLOCK_MSI MSI oscillator selection + * @arg @ref RCC_STOP_WAKEUPCLOCK_HSI HSI oscillator selection + * @note This function shall not be called after the Clock Security System on HSE has been + * enabled. + * @retval None + */ +void HAL_RCCEx_WakeUpStopCLKConfig(uint32_t WakeUpClk) +{ + assert_param(IS_RCC_STOP_WAKEUPCLOCK(WakeUpClk)); + + __HAL_RCC_WAKEUPSTOP_CLK_CONFIG(WakeUpClk); +} + +/** + * @brief Enable the LSE Clock Security System. + * @note Prior to enable the LSE Clock Security System, LSE oscillator is to be enabled + * with HAL_RCC_OscConfig() and the LSE oscillator clock is to be selected as RTC + * clock with HAL_RCCEx_PeriphCLKConfig(). + * @retval None + */ +void HAL_RCCEx_EnableLSECSS(void) +{ + LL_RCC_LSE_EnableCSS(); +} + +/** + * @brief Disable the LSE Clock Security System. + * @note LSE Clock Security System can only be disabled after a LSE failure detection. + * @retval None + */ +void HAL_RCCEx_DisableLSECSS(void) +{ + LL_RCC_LSE_DisableCSS(); + + /* Disable LSE CSS IT if any */ + __HAL_RCC_DISABLE_IT(RCC_IT_LSECSS); +} + +/** + * @brief Enable the LSE Clock Security System Interrupt & corresponding EXTI line. + * @note LSE Clock Security System Interrupt is mapped on RTC EXTI line 18 + * @retval None + */ +void HAL_RCCEx_EnableLSECSS_IT(void) +{ + /* Enable LSE CSS */ + LL_RCC_LSE_EnableCSS(); + + /* Enable LSE CSS IT */ + __HAL_RCC_ENABLE_IT(RCC_IT_LSECSS); + + /* Enable IT on EXTI Line 18 */ + __HAL_RCC_LSECSS_EXTI_ENABLE_IT(); + __HAL_RCC_LSECSS_EXTI_ENABLE_RISING_EDGE(); +} + +/** + * @brief Handle the RCC LSE Clock Security System interrupt request. + * @retval None + */ +void HAL_RCCEx_LSECSS_IRQHandler(void) +{ + /* Check RCC LSE CSSF flag */ + if (__HAL_RCC_GET_IT(RCC_IT_LSECSS)) + { + /* RCC LSE Clock Security System interrupt user callback */ + HAL_RCCEx_LSECSS_Callback(); + + /* Clear RCC LSE CSS pending bit */ + __HAL_RCC_CLEAR_IT(RCC_IT_LSECSS); + } +} + +/** + * @brief RCCEx LSE Clock Security System interrupt callback. + * @retval none + */ +__weak void HAL_RCCEx_LSECSS_Callback(void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RCCEx_LSECSS_Callback should be implemented in the user file + */ +} + +/** + * @brief Select the clock source to output on LSCO1 pin(PA2) or LSC02 pin (PH3) or LSCO3 pin (PC12). + * @note PA2, PH3 or PC12 should be configured in alternate function mode. + * @param RCC_LSCOx specifies the output direction for the clock source. + * @arg @ref RCC_LSCO1 Clock source to output on LSCO1 pin(PA2) + * @arg @ref RCC_LSCO2 Clock source to output on LSCO2 pin(PH3) + * @arg @ref RCC_LSCO3 Clock source to output on LSCO3 pin(PC12) + * @param RCC_LSCOSource specifies the clock source to output. + * This parameter can be one of the following values: + * @arg @ref RCC_LSCOSOURCE_LSI LSI clock selected as LSCO source + * @arg @ref RCC_LSCOSOURCE_LSE LSE clock selected as LSCO source + * @retval None + * @note LSCO should be disable with @ref HAL_RCCEx_DisableLSCO + */ +void HAL_RCCEx_LSCOConfig(uint32_t RCC_LSCOx, uint32_t RCC_LSCOSource) +{ + GPIO_InitTypeDef GPIO_InitStruct; + FlagStatus backupchanged; + + /* Check the parameters */ + assert_param(IS_RCC_LSCO(RCC_LSCOx)); + assert_param(IS_RCC_LSCOSOURCE(RCC_LSCOSource)); + + /* Common GPIO init parameters */ + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; + GPIO_InitStruct.Pull = GPIO_NOPULL; + + /* RCC_LSCO1 */ + if (RCC_LSCOx == RCC_LSCO1) + { + /* LSCO1 Clock Enable */ + __LSCO1_CLK_ENABLE(); + /* Configure the LSCO1 pin in alternate function mode */ + GPIO_InitStruct.Pin = LSCO1_PIN; + GPIO_InitStruct.Alternate = GPIO_AF0_LSCO; + HAL_GPIO_Init(LSCO1_GPIO_PORT, &GPIO_InitStruct); + } + else if (RCC_LSCOx == RCC_LSCO2) + { + /* LSCO2 Clock Enable */ + __LSCO2_CLK_ENABLE(); + /* Configure the LSCO2 pin in alternate function mode */ + GPIO_InitStruct.Pin = LSCO2_PIN; + GPIO_InitStruct.Alternate = GPIO_AF0_LSCO; + HAL_GPIO_Init(LSCO2_GPIO_PORT, &GPIO_InitStruct); + + } +#if defined(RCC_LSCO3_SUPPORT) + else if (RCC_LSCOx == RCC_LSCO3) + { + /* LSCO3 Clock Enable */ + __LSCO3_CLK_ENABLE(); + /* Configure the LSCO3 pin in alternate function mode */ + GPIO_InitStruct.Pin = LSCO3_PIN; + GPIO_InitStruct.Alternate = GPIO_AF6_LSCO; + HAL_GPIO_Init(LSCO3_GPIO_PORT, &GPIO_InitStruct); + } +#endif /* RCC_LSCO3_SUPPORT */ + else + { + ; + } + + /* Update LSCOSEL clock source in Backup Domain control register */ + if (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP)) + { + HAL_PWR_EnableBkUpAccess(); + backupchanged = SET; + } + else + { + backupchanged = RESET; + } + + MODIFY_REG(RCC->BDCR, RCC_BDCR_LSCOSEL | RCC_BDCR_LSCOEN, RCC_LSCOSource | RCC_BDCR_LSCOEN); + + if (backupchanged == SET) + { + HAL_PWR_DisableBkUpAccess(); + } + +} + +/** + * @brief Select the Low Speed clock source to output on LSCO pin (PA2). + * @param LSCOSource specifies the Low Speed clock source to output. + * This parameter can be one of the following values: + * @arg @ref RCC_LSCOSOURCE_LSI LSI clock selected as LSCO source + * @arg @ref RCC_LSCOSOURCE_LSE LSE clock selected as LSCO source + * @retval None + */ +void HAL_RCCEx_EnableLSCO(uint32_t LSCOSource) +{ + /* Check the parameters */ + assert_param(IS_RCC_LSCOSOURCE(LSCOSource)); + + /* Update LSCO selection according to parameter and enable LSCO */ + MODIFY_REG(RCC->BDCR, RCC_BDCR_LSCOSEL, LSCOSource | RCC_BDCR_LSCOEN); +} + +/** + * @brief Disable the Low Speed clock output. + * @retval None + */ +void HAL_RCCEx_DisableLSCO(void) +{ + LL_RCC_LSCO_Disable(); +} + +/** + * @brief Enable the PLL-mode of the MSI. + * @note Prior to enable the PLL-mode of the MSI for automatic hardware + * calibration LSE oscillator is to be enabled with @ref HAL_RCC_OscConfig(). + * @retval None + */ +void HAL_RCCEx_EnableMSIPLLMode(void) +{ + LL_RCC_MSI_EnablePLLMode() ; +} + +/** + * @brief Disable the PLL-mode of the MSI. + * @note PLL-mode of the MSI is automatically reset when LSE oscillator is disabled. + * @retval None + */ +void HAL_RCCEx_DisableMSIPLLMode(void) +{ + LL_RCC_MSI_DisablePLLMode() ; +} + +/** + * @brief Set trimming value + * @param OscillatorType Specifies the oscillator to be trimmed + * This parameter can be one of the following values: + * @arg @ref RCC_OSCILLATORTYPE_LSI2 LSI2 oscillator selected. + * When disabling and re-enabling the LSI2 there is no need for re-trimming + * Trimming is only needed once after a NRST reset. + * Trimming values comes from factory trimmed flash location (0x1FFF7548). + * @note The LSI2 oscillator must be disabled before calling this trimming function through @ref HAL_RCC_OscConfig + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RCCEx_TrimOsc(uint32_t OscillatorType) +{ +#define FTLSI2TRIM (0xFUL) + HAL_StatusTypeDef status = HAL_OK; + + assert_param(IS_RCC_TRIMOSC(OscillatorType)); + + if (OscillatorType == RCC_OSCILLATORTYPE_LSI2) + { + if (LL_RCC_LSI2_IsReady() == 1U) + { + status = HAL_ERROR; + } + else + { + /* Copy the LSI2 trimming information from the factory trimmed Flash location */ + uint32_t factoryTrimming = ((*(uint32_t *)(0x1FFF7548)) & FTLSI2TRIM); + LL_RCC_LSI2_SetTrimming(factoryTrimming); + } + } + else + { + status = HAL_ERROR; + } + return status; +} + +/** + * @} + */ + +#if defined(CRS) +/** @defgroup RCCEx_Exported_Functions_Group3 Extended Clock Recovery System Control functions + * @brief Extended Clock Recovery System Control functions + * +@verbatim + =============================================================================== + ##### Extended Clock Recovery System Control functions ##### + =============================================================================== + [..] + For devices with Clock Recovery System feature (CRS), RCC Extended HAL driver can be used as follows: + + (#) In System clock config, HSI48 needs to be enabled + + (#) Enable CRS clock in IP MSP init which will use CRS functions + + (#) Call CRS functions as follows: + (##) Prepare synchronization configuration necessary for HSI48 calibration + (+++) Default values can be set for frequency Error Measurement (reload and error limit) + and also HSI48 oscillator smooth trimming. + (+++) Macro __HAL_RCC_CRS_RELOADVALUE_CALCULATE can be also used to calculate + directly reload value with target and synchronization frequencies values + (##) Call function HAL_RCCEx_CRSConfig which + (+++) Resets CRS registers to their default values. + (+++) Configures CRS registers with synchronization configuration + (+++) Enables automatic calibration and frequency error counter feature + Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the + periodic USB SOF will not be generated by the host. No SYNC signal will therefore be + provided to the CRS to calibrate the HSI48 on the run. To guarantee the required clock + precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs + should be used as SYNC signal. + + (##) A polling function is provided to wait for complete synchronization + (+++) Call function HAL_RCCEx_CRSWaitSynchronization() + (+++) According to CRS status, user can decide to adjust again the calibration or continue + application if synchronization is OK + + (#) User can retrieve information related to synchronization in calling function + HAL_RCCEx_CRSGetSynchronizationInfo() + + (#) Regarding synchronization status and synchronization information, user can try a new calibration + in changing synchronization configuration and call again HAL_RCCEx_CRSConfig. + Note: When the SYNC event is detected during the downcounting phase (before reaching the zero value), + it means that the actual frequency is lower than the target (and so, that the TRIM value should be + incremented), while when it is detected during the upcounting phase it means that the actual frequency + is higher (and that the TRIM value should be decremented). + + (#) In interrupt mode, user can resort to the available macros (__HAL_RCC_CRS_XXX_IT). Interrupts will go + through CRS Handler (CRS_IRQn/CRS_IRQHandler) + (++) Call function HAL_RCCEx_CRSConfig() + (++) Enable CRS_IRQn (thanks to NVIC functions) + (++) Enable CRS interrupt (__HAL_RCC_CRS_ENABLE_IT) + (++) Implement CRS status management in the following user callbacks called from + HAL_RCCEx_CRS_IRQHandler(): + (+++) HAL_RCCEx_CRS_SyncOkCallback() + (+++) HAL_RCCEx_CRS_SyncWarnCallback() + (+++) HAL_RCCEx_CRS_ExpectedSyncCallback() + (+++) HAL_RCCEx_CRS_ErrorCallback() + + (#) To force a SYNC EVENT, user can use the function HAL_RCCEx_CRSSoftwareSynchronizationGenerate(). + This function can be called before calling HAL_RCCEx_CRSConfig (for instance in Systick handler) + +@endverbatim + * @{ + */ + +/** + * @brief Start automatic synchronization for polling mode + * @param pInit Pointer on RCC_CRSInitTypeDef structure + * @retval None + */ +void HAL_RCCEx_CRSConfig(RCC_CRSInitTypeDef *pInit) +{ + uint32_t value; + + /* Check the parameters */ + assert_param(IS_RCC_CRS_SYNC_DIV(pInit->Prescaler)); + assert_param(IS_RCC_CRS_SYNC_SOURCE(pInit->Source)); + assert_param(IS_RCC_CRS_SYNC_POLARITY(pInit->Polarity)); + assert_param(IS_RCC_CRS_RELOADVALUE(pInit->ReloadValue)); + assert_param(IS_RCC_CRS_ERRORLIMIT(pInit->ErrorLimitValue)); + assert_param(IS_RCC_CRS_HSI48CALIBRATION(pInit->HSI48CalibrationValue)); + + /* CONFIGURATION */ + + /* Before configuration, reset CRS registers to their default values*/ + __HAL_RCC_CRS_FORCE_RESET(); + __HAL_RCC_CRS_RELEASE_RESET(); + + /* Set the SYNCDIV[2:0] bits according to Prescaler value */ + /* Set the SYNCSRC[1:0] bits according to Source value */ + /* Set the SYNCSPOL bit according to Polarity value */ + value = (pInit->Prescaler | pInit->Source | pInit->Polarity); + /* Set the RELOAD[15:0] bits according to ReloadValue value */ + value |= pInit->ReloadValue; + /* Set the FELIM[7:0] bits according to ErrorLimitValue value */ + value |= (pInit->ErrorLimitValue << CRS_CFGR_FELIM_Pos); + WRITE_REG(CRS->CFGR, value); + + /* Adjust HSI48 oscillator smooth trimming */ + /* Set the TRIM[5:0] bits according to RCC_CRS_HSI48CalibrationValue value */ + MODIFY_REG(CRS->CR, CRS_CR_TRIM, (pInit->HSI48CalibrationValue << CRS_CR_TRIM_Pos)); + + /* START AUTOMATIC SYNCHRONIZATION*/ + + /* Enable Automatic trimming & Frequency error counter */ + SET_BIT(CRS->CR, CRS_CR_AUTOTRIMEN | CRS_CR_CEN); +} + +/** + * @brief Generate the software synchronization event + * @retval None + */ +void HAL_RCCEx_CRSSoftwareSynchronizationGenerate(void) +{ + LL_CRS_GenerateEvent_SWSYNC(); +} + +/** + * @brief Return synchronization info + * @param pSynchroInfo Pointer on @ref RCC_CRSSynchroInfoTypeDef structure + * @retval None + */ +void HAL_RCCEx_CRSGetSynchronizationInfo(RCC_CRSSynchroInfoTypeDef *pSynchroInfo) +{ + /* Check the parameter */ + assert_param(pSynchroInfo != (void *)NULL); + + /* Get the reload value */ + pSynchroInfo->ReloadValue = LL_CRS_GetReloadCounter(); + + /* Get HSI48 oscillator smooth trimming */ + pSynchroInfo->HSI48CalibrationValue = LL_CRS_GetHSI48SmoothTrimming(); + + /* Get Frequency error capture */ + pSynchroInfo->FreqErrorCapture = LL_CRS_GetFreqErrorCapture(); + + /* Get Frequency error direction */ + pSynchroInfo->FreqErrorDirection = LL_CRS_GetFreqErrorDirection(); +} + +/** + * @brief Wait for CRS Synchronization status. + * @param Timeout Duration of the timeout + * @note Timeout is based on the maximum time to receive a SYNC event based on synchronization + * frequency. + * @note If Timeout set to HAL_MAX_DELAY, HAL_TIMEOUT will be never returned. + * @retval Combination of Synchronization status + * This parameter can be a combination of the following values: + * @arg @ref RCC_CRS_TIMEOUT + * @arg @ref RCC_CRS_SYNCOK + * @arg @ref RCC_CRS_SYNCWARN + * @arg @ref RCC_CRS_SYNCERR + * @arg @ref RCC_CRS_SYNCMISS + * @arg @ref RCC_CRS_TRIMOVF + */ +uint32_t HAL_RCCEx_CRSWaitSynchronization(uint32_t Timeout) +{ + uint32_t crsstatus = RCC_CRS_NONE; + uint32_t tickstart; + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Wait for CRS flag or timeout detection */ + do + { + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + crsstatus = RCC_CRS_TIMEOUT; + } + } + /* Check CRS SYNCOK flag */ + if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCOK)) + { + /* CRS SYNC event OK */ + crsstatus |= RCC_CRS_SYNCOK; + + /* Clear CRS SYNC event OK bit */ + __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCOK); + } + + /* Check CRS SYNCWARN flag */ + if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCWARN)) + { + /* CRS SYNC warning */ + crsstatus |= RCC_CRS_SYNCWARN; + + /* Clear CRS SYNCWARN bit */ + __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCWARN); + } + + /* Check CRS TRIM overflow flag */ + if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_TRIMOVF)) + { + /* CRS SYNC Error */ + crsstatus |= RCC_CRS_TRIMOVF; + + /* Clear CRS Error bit */ + __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_TRIMOVF); + } + + /* Check CRS Error flag */ + if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCERR)) + { + /* CRS SYNC Error */ + crsstatus |= RCC_CRS_SYNCERR; + + /* Clear CRS Error bit */ + __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCERR); + } + + /* Check CRS SYNC Missed flag */ + if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCMISS)) + { + /* CRS SYNC Missed */ + crsstatus |= RCC_CRS_SYNCMISS; + + /* Clear CRS SYNC Missed bit */ + __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCMISS); + } + + /* Check CRS Expected SYNC flag */ + if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_ESYNC)) + { + /* frequency error counter reached a zero value */ + __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_ESYNC); + } + } while (RCC_CRS_NONE == crsstatus); + + return crsstatus; +} + +/** + * @brief Handle the Clock Recovery System interrupt request. + * @retval None + */ +void HAL_RCCEx_CRS_IRQHandler(void) +{ + uint32_t crserror = RCC_CRS_NONE; + /* Get current IT flags and IT sources values */ + uint32_t itflags = READ_REG(CRS->ISR); + uint32_t itsources = READ_REG(CRS->CR); + + /* Check CRS SYNCOK flag */ + if (((itflags & RCC_CRS_FLAG_SYNCOK) != 0U) && ((itsources & RCC_CRS_IT_SYNCOK) != 0U)) + { + /* Clear CRS SYNC event OK flag */ + LL_CRS_ClearFlag_SYNCOK(); + + /* user callback */ + HAL_RCCEx_CRS_SyncOkCallback(); + } + /* Check CRS SYNCWARN flag */ + else if (((itflags & RCC_CRS_FLAG_SYNCWARN) != 0U) && ((itsources & RCC_CRS_IT_SYNCWARN) != 0U)) + { + /* Clear CRS SYNCWARN flag */ + LL_CRS_ClearFlag_SYNCWARN(); + + /* user callback */ + HAL_RCCEx_CRS_SyncWarnCallback(); + } + /* Check CRS Expected SYNC flag */ + else if (((itflags & RCC_CRS_FLAG_ESYNC) != 0U) && ((itsources & RCC_CRS_IT_ESYNC) != 0U)) + { + /* frequency error counter reached a zero value */ + LL_CRS_ClearFlag_ESYNC(); + + /* user callback */ + HAL_RCCEx_CRS_ExpectedSyncCallback(); + } + /* Check CRS Error flags */ + else + { + if (((itflags & RCC_CRS_FLAG_ERR) != 0U) && ((itsources & RCC_CRS_IT_ERR) != 0U)) + { + if ((itflags & RCC_CRS_FLAG_SYNCERR) != 0U) + { + crserror |= RCC_CRS_SYNCERR; + } + if ((itflags & RCC_CRS_FLAG_SYNCMISS) != 0U) + { + crserror |= RCC_CRS_SYNCMISS; + } + if ((itflags & RCC_CRS_FLAG_TRIMOVF) != 0U) + { + crserror |= RCC_CRS_TRIMOVF; + } + + /* Clear CRS Error flags */ + LL_CRS_ClearFlag_ERR(); + + /* user error callback */ + HAL_RCCEx_CRS_ErrorCallback(crserror); + } + } +} + +/** + * @brief RCCEx Clock Recovery System SYNCOK interrupt callback. + * @retval none + */ +__weak void HAL_RCCEx_CRS_SyncOkCallback(void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the @ref HAL_RCCEx_CRS_SyncOkCallback should be implemented in the user file + */ +} + +/** + * @brief RCCEx Clock Recovery System SYNCWARN interrupt callback. + * @retval none + */ +__weak void HAL_RCCEx_CRS_SyncWarnCallback(void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RCCEx_CRS_SyncWarnCallback should be implemented in the user file + */ +} + +/** + * @brief RCCEx Clock Recovery System Expected SYNC interrupt callback. + * @retval none + */ +__weak void HAL_RCCEx_CRS_ExpectedSyncCallback(void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RCCEx_CRS_ExpectedSyncCallback should be implemented in the user file + */ +} + +/** + * @brief RCCEx Clock Recovery System Error interrupt callback. + * @param Error Combination of Error status. + * This parameter can be a combination of the following values: + * @arg @ref RCC_CRS_SYNCERR + * @arg @ref RCC_CRS_SYNCMISS + * @arg @ref RCC_CRS_TRIMOVF + * @retval none + */ +__weak void HAL_RCCEx_CRS_ErrorCallback(uint32_t Error) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(Error); + + /* NOTE : This function should not be modified, when the callback is needed, + the @ref HAL_RCCEx_CRS_ErrorCallback should be implemented in the user file + */ +} + +/** + * @} + */ +#endif /* CRS */ + +/** + * @} + */ + +/** @addtogroup RCCEx_Private_Functions + * @{ + */ + +#if defined(SAI1) +/** + * @brief Configure the parameters N & P of PLLSAI1 and enable PLLSAI1 output clock(s). + * @param PLLSAI1 pointer to an RCC_PLLSAI1InitTypeDef structure that + * contains the configuration parameters N & P as well as PLLSAI1 output clock(s) + * + * @note PLLSAI1 is temporary disable to apply new parameters + * + * @retval HAL status + */ +static HAL_StatusTypeDef RCCEx_PLLSAI1_ConfigNP(RCC_PLLSAI1InitTypeDef *PLLSAI1) +{ + uint32_t tickstart; + HAL_StatusTypeDef status = HAL_OK; + + /* check for PLLSAI1 Parameters used to output PLLSAI1CLK */ + assert_param(IS_RCC_PLLN_VALUE(PLLSAI1->PLLN)); + assert_param(IS_RCC_PLLP_VALUE(PLLSAI1->PLLP)); + assert_param(IS_RCC_PLLSAI1CLOCKOUT_VALUE(PLLSAI1->PLLSAI1ClockOut)); + + /* Disable the PLLSAI1 */ + __HAL_RCC_PLLSAI1_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLLSAI1 is ready to be updated */ + while (LL_RCC_PLLSAI1_IsReady() != 0U) + { + if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE) + { + status = HAL_TIMEOUT; + break; + } + } + + if (status == HAL_OK) + { + /* Configure the PLLSAI1 Multiplication factor N */ + __HAL_RCC_PLLSAI1_MULN_CONFIG(PLLSAI1->PLLN); + + /* Configure the PLLSAI1 Division factor P */ + __HAL_RCC_PLLSAI1_DIVP_CONFIG(PLLSAI1->PLLP); + + /* Enable the PLLSAI1 again by setting PLLSAI1ON to 1*/ + __HAL_RCC_PLLSAI1_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLLSAI1 is ready */ + while (LL_RCC_PLLSAI1_IsReady() != 1U) + { + if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE) + { + status = HAL_TIMEOUT; + break; + } + } + + if (status == HAL_OK) + { + /* Configure the PLLSAI1 Clock output(s) */ + __HAL_RCC_PLLSAI1CLKOUT_ENABLE(PLLSAI1->PLLSAI1ClockOut); + } + } + + return status; +} + +/** + * @brief Configure the parameters N & Q of PLLSAI1 and enable PLLSAI1 output clock(s). + * @param PLLSAI1 pointer to an RCC_PLLSAI1InitTypeDef structure that + * contains the configuration parameters N & Q as well as PLLSAI1 output clock(s) + * + * @note PLLSAI1 is temporary disable to apply new parameters + * + * @retval HAL status + */ +static HAL_StatusTypeDef RCCEx_PLLSAI1_ConfigNQ(RCC_PLLSAI1InitTypeDef *PLLSAI1) +{ + uint32_t tickstart; + HAL_StatusTypeDef status = HAL_OK; + + /* check for PLLSAI1 Parameters used to output PLLSAI1CLK */ + assert_param(IS_RCC_PLLN_VALUE(PLLSAI1->PLLN)); + assert_param(IS_RCC_PLLQ_VALUE(PLLSAI1->PLLQ)); + assert_param(IS_RCC_PLLSAI1CLOCKOUT_VALUE(PLLSAI1->PLLSAI1ClockOut)); + + /* Disable the PLLSAI1 */ + __HAL_RCC_PLLSAI1_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLLSAI1 is ready to be updated */ + while (LL_RCC_PLLSAI1_IsReady() != 0U) + { + if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE) + { + status = HAL_TIMEOUT; + break; + } + } + + if (status == HAL_OK) + { + /* Configure the PLLSAI1 Multiplication factor N */ + __HAL_RCC_PLLSAI1_MULN_CONFIG(PLLSAI1->PLLN); + /* Configure the PLLSAI1 Division factor Q */ + __HAL_RCC_PLLSAI1_DIVQ_CONFIG(PLLSAI1->PLLQ); + + /* Enable the PLLSAI1 again by setting PLLSAI1ON to 1*/ + __HAL_RCC_PLLSAI1_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLLSAI1 is ready */ + while (LL_RCC_PLLSAI1_IsReady() != 1U) + { + if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE) + { + status = HAL_TIMEOUT; + break; + } + } + + if (status == HAL_OK) + { + /* Configure the PLLSAI1 Clock output(s) */ + __HAL_RCC_PLLSAI1CLKOUT_ENABLE(PLLSAI1->PLLSAI1ClockOut); + } + } + + return status; +} + +/** + * @brief Configure the parameters N & R of PLLSAI1 and enable PLLSAI1 output clock(s). + * @param PLLSAI1 pointer to an RCC_PLLSAI1InitTypeDef structure that + * contains the configuration parameters N & R as well as PLLSAI1 output clock(s) + * + * @note PLLSAI1 is temporary disable to apply new parameters + * + * @retval HAL status + */ +static HAL_StatusTypeDef RCCEx_PLLSAI1_ConfigNR(RCC_PLLSAI1InitTypeDef *PLLSAI1) +{ + uint32_t tickstart; + HAL_StatusTypeDef status = HAL_OK; + + /* check for PLLSAI1 Parameters used to output PLLSAI1CLK */ + assert_param(IS_RCC_PLLN_VALUE(PLLSAI1->PLLN)); + assert_param(IS_RCC_PLLR_VALUE(PLLSAI1->PLLR)); + assert_param(IS_RCC_PLLSAI1CLOCKOUT_VALUE(PLLSAI1->PLLSAI1ClockOut)); + + /* Disable the PLLSAI1 */ + __HAL_RCC_PLLSAI1_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLLSAI1 is ready to be updated */ + while (LL_RCC_PLLSAI1_IsReady() != 0U) + { + if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE) + { + status = HAL_TIMEOUT; + break; + } + } + + if (status == HAL_OK) + { + /* Configure the PLLSAI1 Multiplication factor N */ + __HAL_RCC_PLLSAI1_MULN_CONFIG(PLLSAI1->PLLN); + /* Configure the PLLSAI1 Division factor R */ + __HAL_RCC_PLLSAI1_DIVR_CONFIG(PLLSAI1->PLLR); + + /* Enable the PLLSAI1 again by setting PLLSAI1ON to 1*/ + __HAL_RCC_PLLSAI1_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLLSAI1 is ready */ + while (LL_RCC_PLLSAI1_IsReady() != 1U) + { + if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE) + { + status = HAL_TIMEOUT; + break; + } + } + + if (status == HAL_OK) + { + /* Configure the PLLSAI1 Clock output(s) */ + __HAL_RCC_PLLSAI1CLKOUT_ENABLE(PLLSAI1->PLLSAI1ClockOut); + } + } + + return status; +} +#endif /* SAI1 */ + +/** + * @brief Return PLL clock (PLLPCLK) frequency used for SAI domain + * @retval PLLPCLK clock frequency (in Hz) + */ +static uint32_t RCC_PLL_GetFreqDomain_P(void) +{ + uint32_t pllinputfreq; + uint32_t pllsource; + + /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI Value / PLLM) * PLLN + SAI Domain clock = PLL_VCO / PLLP + */ + pllsource = LL_RCC_PLL_GetMainSource(); + + switch (pllsource) + { + case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */ + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + + case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ + pllinputfreq = HSI_VALUE; + break; + + case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ + if (LL_RCC_HSE_IsEnabledDiv2() == 1U) + { + pllinputfreq = HSE_VALUE / 2U; + } + else + { + pllinputfreq = HSE_VALUE; + } + break; + + default: + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + } + return __LL_RCC_CALC_PLLCLK_ADC_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), + LL_RCC_PLL_GetN(), LL_RCC_PLL_GetP()); +} + +/** + * @brief Return PLL clock (PLLQCLK) frequency used for 48 MHz domain + * @retval PLLQCLK clock frequency (in Hz) + */ +static uint32_t RCC_PLL_GetFreqDomain_Q(void) +{ + uint32_t pllinputfreq; + uint32_t pllsource; + + /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLN + 48M Domain clock = PLL_VCO / PLLQ + */ + pllsource = LL_RCC_PLL_GetMainSource(); + + switch (pllsource) + { + case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */ + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + + case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ + pllinputfreq = HSI_VALUE; + break; + + case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ + if (LL_RCC_HSE_IsEnabledDiv2() == 1U) + { + pllinputfreq = HSE_VALUE / 2U; + } + else + { + pllinputfreq = HSE_VALUE; + } + + break; + + default: + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + } + return __LL_RCC_CALC_PLLCLK_48M_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), + LL_RCC_PLL_GetN(), LL_RCC_PLL_GetQ()); +} + +#if defined(SAI1) +/** + * @brief Return PLLSAI1 clock (PLLSAI1RCLK) frequency used for ADC domain + * @retval PLLSAI1RCLK clock frequency (in Hz) + */ +static uint32_t RCC_PLLSAI1_GetFreqDomain_R(void) +{ + uint32_t pllinputfreq; + uint32_t pllsource; + + /* PLLSAI1_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLSAI1N */ + /* 48M Domain clock = PLLSAI1_VCO / PLLSAI1R */ + pllsource = LL_RCC_PLL_GetMainSource(); + + switch (pllsource) + { + case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLLSAI1 clock source */ + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + + case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLLSAI1 clock source */ + pllinputfreq = HSI_VALUE; + break; + + case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLLSAI1 clock source */ + if (LL_RCC_HSE_IsEnabledDiv2() == 1U) + { + pllinputfreq = HSE_VALUE / 2U; + } + else + { + pllinputfreq = HSE_VALUE; + } + break; + + default: + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + } + return __LL_RCC_CALC_PLLSAI1_ADC_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), + LL_RCC_PLLSAI1_GetN(), LL_RCC_PLLSAI1_GetR()); +} + +/** + * @brief Return PLLSAI1 clock (PLLSAI1PCLK) frequency used for SAI domain + * @retval PLLSAI1PCLK clock frequency (in Hz) + */ +static uint32_t RCC_PLLSAI1_GetFreqDomain_P(void) +{ + uint32_t pllinputfreq; + uint32_t pllsource; + + /* PLLSAI1_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLSAI1N */ + /* SAI Domain clock = PLLSAI1_VCO / PLLSAI1P */ + pllsource = LL_RCC_PLL_GetMainSource(); + + switch (pllsource) + { + case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLLSAI1 clock source */ + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + + case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLLSAI1 clock source */ + pllinputfreq = HSI_VALUE; + break; + + case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLLSAI1 clock source */ + if (LL_RCC_HSE_IsEnabledDiv2() == 1U) + { + pllinputfreq = HSE_VALUE / 2U; + } + else + { + pllinputfreq = HSE_VALUE; + } + break; + + default: + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + } + return __LL_RCC_CALC_PLLSAI1_SAI_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), + LL_RCC_PLLSAI1_GetN(), LL_RCC_PLLSAI1_GetP()); +} + +/** + * @brief Return PLLSAI1 clock (PLLSAI1QCLK) frequency used for 48Mhz domain + * @retval PLLSAI1QCLK clock frequency (in Hz) + */ +static uint32_t RCC_PLLSAI1_GetFreqDomain_Q(void) +{ + uint32_t pllinputfreq; + uint32_t pllsource; + + /* PLLSAI1_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLSAI1N */ + /* 48M Domain clock = PLLSAI1_VCO / PLLSAI1Q */ + pllsource = LL_RCC_PLL_GetMainSource(); + + switch (pllsource) + { + case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLLSAI1 clock source */ + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + + case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLLSAI1 clock source */ + pllinputfreq = HSI_VALUE; + break; + + case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLLSAI1 clock source */ + if (LL_RCC_HSE_IsEnabledDiv2() == 1U) + { + pllinputfreq = HSE_VALUE / 2U; + } + else + { + pllinputfreq = HSE_VALUE; + } + break; + + default: + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + } + return __LL_RCC_CALC_PLLSAI1_48M_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), + LL_RCC_PLLSAI1_GetN(), LL_RCC_PLLSAI1_GetQ()); +} +#endif /* SAI1 */ + +/** + * @} + */ + +#endif /* HAL_RCC_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rtc.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rtc.c new file mode 100644 index 0000000..b5ba9b2 --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rtc.c @@ -0,0 +1,1945 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_rtc.c + * @author MCD Application Team + * @brief RTC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Real-Time Clock (RTC) peripheral: + * + Initialization and de-initialization functions + * + Calendar (Time and Date) configuration functions + * + Alarms (Alarm A and Alarm B) configuration functions + * + Peripheral Control functions + * + Peripheral State functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### RTC and Backup Domain Operating Condition ##### + ============================================================================== + [..] The real-time clock (RTC) and the RTC backup registers can be powered + from the VBAT voltage when the main VDD supply is powered off. + To retain the content of the RTC backup registers and supply the RTC when + VDD is turned off, VBAT pin can be connected to an optional standby + voltage supplied by a battery or by another source. + + [..] To allow the RTC operating even when the main digital supply (VDD) is turned + off, the VBAT pin powers the following blocks: + (#) The RTC + (#) The LSE oscillator + (#) PC13 to PC15 I/Os, plus PA0 and PC12 I/Os (when available) + + [..] When the backup domain is supplied by VDD (analog switch connected to VDD), + the following pins are available: + (#) PC14 and PC15 can be used as either GPIO or LSE pins + (#) PC13 can be used as a GPIO or as the RTC_AF1 pin + (#) PA0 can be used as a GPIO or as the RTC_AF2 pin + (#) PC12 can be used as a GPIO or as the RTC_AF3 pin + + [..] When the backup domain is supplied by VBAT (analog switch connected to VBAT + because VDD is not present), the following pins are available: + (#) PC14 and PC15 can be used as LSE pins only + (#) PC13 can be used as the RTC_AF1 pin + (#) PA0 can be used as the RTC_AF2 pin + (#) PC12 can be used as the RTC_AF3 pin + + ##### Backup Domain Reset ##### + ================================================================== + [..] The backup domain reset sets all RTC registers and the RCC_BDCR register + to their reset values. + [..] A backup domain reset is generated when one of the following events occurs: + (#) Software reset, triggered by setting the BDRST bit in the + RCC Backup domain control register (RCC_BDCR). + (#) VDD or VBAT power on, if both supplies have previously been powered off. + (#) Tamper detection event resets all data backup registers. + + ##### Backup Domain Access ##### + ================================================================== + [..] After reset, the backup domain (RTC registers and RTC backup data registers) + is protected against possible unwanted write accesses. + [..] To enable access to the RTC Domain and RTC registers, proceed as follows: + (+) Enable the Power Controller (PWR) APB1 interface clock using the + __HAL_RCC_PWR_CLK_ENABLE() macro. + (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function. + (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() macro. + (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro. + + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (+) Enable the RTC domain access (see description in the section above). + (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour + format using the HAL_RTC_Init() function. + + *** Time and Date configuration *** + =================================== + [..] + (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime() + and HAL_RTC_SetDate() functions. + (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() + functions. + (+) To manage the RTC summer or winter time change, use the following + functions: + (++) HAL_RTC_DST_Add1Hour() or HAL_RTC_DST_Sub1Hour to add or subtract + 1 hour from the calendar time. + (++) HAL_RTC_DST_SetStoreOperation() or HAL_RTC_DST_ClearStoreOperation + to memorize whether the time change has been performed or not. + + *** Alarm configuration *** + =========================== + [..] + (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function. + You can also configure the RTC Alarm with interrupt mode using the + HAL_RTC_SetAlarm_IT() function. + (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function. + + ##### RTC and low power modes ##### + ================================================================== + [..] The MCU can be woken up from a low power mode by an RTC alternate + function. + [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B), + RTC wakeup, RTC tamper event detection and RTC timestamp event detection. + These RTC alternate functions can wake up the system from the Stop and + Standby low power modes. + [..] The system can also wake up from low power modes without depending + on an external interrupt (Auto-wakeup mode), by using the RTC alarm + or the RTC wakeup events. + [..] The RTC provides a programmable time base for waking up from the + Stop or Standby mode at regular intervals. + Wakeup from STOP and STANDBY modes is possible only when the RTC clock + source is LSE or LSI. + + *** Callback registration *** + ============================================= + [..] + When the compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all + callbacks are set to the corresponding weak functions. + This is the recommended configuration in order to optimize memory/code + consumption footprint/performances. + [..] + The compilation define USE_HAL_RTC_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + Use Function HAL_RTC_RegisterCallback() to register an interrupt callback. + [..] + Function HAL_RTC_RegisterCallback() allows to register following callbacks: + (+) AlarmAEventCallback : RTC Alarm A Event callback. + (+) AlarmBEventCallback : RTC Alarm B Event callback. + (+) TimeStampEventCallback : RTC Timestamp Event callback. + (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback. + (+) Tamper1EventCallback : RTC Tamper 1 Event callback. (*) + (+) Tamper2EventCallback : RTC Tamper 2 Event callback. + (+) Tamper3EventCallback : RTC Tamper 3 Event callback. (*) + (+) MspInitCallback : RTC MspInit callback. + (+) MspDeInitCallback : RTC MspDeInit callback. + + (*) value not applicable to all devices. + [..] + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + [..] + Use function HAL_RTC_UnRegisterCallback() to reset a callback to the default + weak function. + HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) AlarmAEventCallback : RTC Alarm A Event callback. + (+) AlarmBEventCallback : RTC Alarm B Event callback. + (+) TimeStampEventCallback : RTC Timestamp Event callback. + (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback. + (+) Tamper1EventCallback : RTC Tamper 1 Event callback. (*) + (+) Tamper2EventCallback : RTC Tamper 2 Event callback. + (+) Tamper3EventCallback : RTC Tamper 3 Event callback. (*) + (+) MspInitCallback : RTC MspInit callback. + (+) MspDeInitCallback : RTC MspDeInit callback. + + (*) value not applicable to all devices. + [..] + By default, after the HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET, + all callbacks are set to the corresponding weak functions: + examples AlarmAEventCallback(), TimeStampEventCallback(). + Exception done for MspInit() and MspDeInit() callbacks that are reset to the + legacy weak function in the HAL_RTC_Init()/HAL_RTC_DeInit() only when these + callbacks are null (not registered beforehand). + If not, MspInit() or MspDeInit() are not null, HAL_RTC_Init()/HAL_RTC_DeInit() + keep and use the user MspInit()/MspDeInit() callbacks (registered beforehand). + [..] + Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only. + Exception done for MspInit() and MspDeInit() that can be registered/unregistered + in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state. + Thus registered (user) MspInit()/MspDeInit() callbacks can be used during the + Init/DeInit. + In that case first register the MspInit()/MspDeInit() user callbacks using + HAL_RTC_RegisterCallback() before calling HAL_RTC_DeInit() or HAL_RTC_Init() + functions. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @defgroup RTC RTC + * @brief RTC HAL module driver + * @{ + */ + +#ifdef HAL_RTC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup RTC_Exported_Functions RTC Exported Functions + * @{ + */ + +/** @defgroup RTC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to initialize and configure the + RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable + RTC registers Write protection, enter and exit the RTC initialization mode, + RTC registers synchronization check and reference clock detection enable. + (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base. + It is split into 2 programmable prescalers to minimize power consumption. + (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler. + (++) When both prescalers are used, it is recommended to configure the + asynchronous prescaler to a high value to minimize power consumption. + (#) All RTC registers are Write protected. Writing to the RTC registers + is enabled by writing a key into the Write Protection register, RTC_WPR. + (#) To configure the RTC Calendar, user application should enter + initialization mode. In this mode, the calendar counter is stopped + and its value can be updated. When the initialization sequence is + complete, the calendar restarts counting after 4 RTCCLK cycles. + (#) To read the calendar through the shadow registers after Calendar + initialization, calendar update or after wakeup from low power modes + the software must first clear the RSF flag. The software must then + wait until it is set again before reading the calendar, which means + that the calendar registers have been correctly copied into the + RTC_TR and RTC_DR shadow registers. The HAL_RTC_WaitForSynchro() function + implements the above software sequence (RSF clear and RSF check). + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the RTC peripheral + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc) +{ + HAL_StatusTypeDef status; + + /* Check RTC handler validity */ + if (hrtc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance)); + assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat)); + assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv)); + assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv)); + assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut)); + assert_param(IS_RTC_OUTPUT_REMAP(hrtc->Init.OutPutRemap)); + assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity)); + assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType)); + +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + if (hrtc->State == HAL_RTC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hrtc->Lock = HAL_UNLOCKED; + + hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */ + hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */ + hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */ + hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */ +#if defined(RTC_TAMPER1_SUPPORT) + hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */ +#endif /* RTC_TAMPER1_SUPPORT */ + hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */ +#if defined(RTC_TAMPER3_SUPPORT) + hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */ +#endif /* RTC_TAMPER3_SUPPORT */ + + if (hrtc->MspInitCallback == NULL) + { + hrtc->MspInitCallback = HAL_RTC_MspInit; + } + /* Init the low level hardware */ + hrtc->MspInitCallback(hrtc); + + if (hrtc->MspDeInitCallback == NULL) + { + hrtc->MspDeInitCallback = HAL_RTC_MspDeInit; + } + } +#else /* USE_HAL_RTC_REGISTER_CALLBACKS */ + if (hrtc->State == HAL_RTC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hrtc->Lock = HAL_UNLOCKED; + + /* Initialize RTC MSP */ + HAL_RTC_MspInit(hrtc); + } +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Check whether the calendar needs to be initialized */ + if (__HAL_RTC_IS_CALENDAR_INITIALIZED(hrtc) == 0U) + { + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Enter Initialization mode */ + status = RTC_EnterInitMode(hrtc); + + if (status == HAL_OK) + { + /* Clear RTC_CR FMT, OSEL and POL Bits */ + hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL)); + /* Set RTC_CR register */ + hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity); + + /* Configure the RTC PRER */ + hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv); + hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos); + + /* Exit Initialization mode */ + status = RTC_ExitInitMode(hrtc); + } + + if (status == HAL_OK) + { +#if defined(RTC_OR_ALARMOUTTYPE) + hrtc->Instance->OR &= (uint32_t)~(RTC_OUTPUT_TYPE_PUSHPULL | RTC_OUTPUT_REMAP_POS1); + hrtc->Instance->OR |= (uint32_t)(hrtc->Init.OutPutType | hrtc->Init.OutPutRemap); +#else + hrtc->Instance->OR &= (uint32_t)~RTC_OUTPUT_REMAP_POS1; + hrtc->Instance->OR |= (uint32_t)(hrtc->Init.OutPutRemap); +#endif /* RTC_OR_ALARMOUTTYPE */ + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + } + else + { + /* The calendar is already initialized */ + status = HAL_OK; + } + + if (status == HAL_OK) + { + hrtc->State = HAL_RTC_STATE_READY; + } + + return status; +} + +/** + * @brief DeInitializes the RTC peripheral + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @note This function does not reset the RTC Backup Data registers. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc) +{ + HAL_StatusTypeDef status; + + /* Check the parameters */ + assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance)); + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Enter Initialization mode */ + status = RTC_EnterInitMode(hrtc); + + if (status == HAL_OK) + { + /* Reset RTC registers */ + hrtc->Instance->TR = 0x00000000U; + hrtc->Instance->DR = (RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0); + hrtc->Instance->CR = 0x00000000U; + hrtc->Instance->WUTR = RTC_WUTR_WUT; + hrtc->Instance->PRER = (uint32_t)(RTC_PRER_PREDIV_A | 0x000000FFU); + hrtc->Instance->ALRMAR = 0x00000000U; + hrtc->Instance->ALRMBR = 0x00000000U; + hrtc->Instance->CALR = 0x00000000U; + hrtc->Instance->SHIFTR = 0x00000000U; + hrtc->Instance->ALRMASSR = 0x00000000U; + hrtc->Instance->ALRMBSSR = 0x00000000U; + + /* Exit Initialization mode */ + status = RTC_ExitInitMode(hrtc); + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + if (status == HAL_OK) + { + /* Reset Tamper and alternate functions configuration register */ + hrtc->Instance->TAMPCR = 0x00000000U; + + /* Reset Option register */ + hrtc->Instance->OR = 0x00000000U; + +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + if (hrtc->MspDeInitCallback == NULL) + { + hrtc->MspDeInitCallback = HAL_RTC_MspDeInit; + } + + /* DeInit the low level hardware: CLOCK, NVIC.*/ + hrtc->MspDeInitCallback(hrtc); +#else /* USE_HAL_RTC_REGISTER_CALLBACKS */ + /* De-Initialize RTC MSP */ + HAL_RTC_MspDeInit(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + + hrtc->State = HAL_RTC_STATE_RESET; + } + + /* Release Lock */ + __HAL_UNLOCK(hrtc); + + return status; +} + +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) +/** + * @brief Registers a User RTC Callback + * To be used instead of the weak predefined callback + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID + * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID + * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID Timestamp Event Callback ID + * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID Wakeup Timer Event Callback ID + * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Event Callback ID (*) + * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Event Callback ID + * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Event Callback ID (*) + * @arg @ref HAL_RTC_MSPINIT_CB_ID MSP Init callback ID + * @arg @ref HAL_RTC_MSPDEINIT_CB_ID MSP DeInit callback ID + * + * (*) value not applicable to all devices. + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hrtc); + + if (HAL_RTC_STATE_READY == hrtc->State) + { + switch (CallbackID) + { + case HAL_RTC_ALARM_A_EVENT_CB_ID : + hrtc->AlarmAEventCallback = pCallback; + break; + + case HAL_RTC_ALARM_B_EVENT_CB_ID : + hrtc->AlarmBEventCallback = pCallback; + break; + + case HAL_RTC_TIMESTAMP_EVENT_CB_ID : + hrtc->TimeStampEventCallback = pCallback; + break; + + case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID : + hrtc->WakeUpTimerEventCallback = pCallback; + break; + +#if defined(RTC_TAMPER1_SUPPORT) + case HAL_RTC_TAMPER1_EVENT_CB_ID : + hrtc->Tamper1EventCallback = pCallback; + break; +#endif /* RTC_TAMPER1_SUPPORT */ + + case HAL_RTC_TAMPER2_EVENT_CB_ID : + hrtc->Tamper2EventCallback = pCallback; + break; + +#if defined(RTC_TAMPER3_SUPPORT) + case HAL_RTC_TAMPER3_EVENT_CB_ID : + hrtc->Tamper3EventCallback = pCallback; + break; +#endif /* RTC_TAMPER3_SUPPORT */ + + case HAL_RTC_MSPINIT_CB_ID : + hrtc->MspInitCallback = pCallback; + break; + + case HAL_RTC_MSPDEINIT_CB_ID : + hrtc->MspDeInitCallback = pCallback; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_RTC_STATE_RESET == hrtc->State) + { + switch (CallbackID) + { + case HAL_RTC_MSPINIT_CB_ID : + hrtc->MspInitCallback = pCallback; + break; + + case HAL_RTC_MSPDEINIT_CB_ID : + hrtc->MspDeInitCallback = pCallback; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hrtc); + + return status; +} + +/** + * @brief Unregisters an RTC Callback + * RTC callback is redirected to the weak predefined callback + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID + * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID + * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID Timestamp Event Callback ID + * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID Wakeup Timer Event Callback ID + * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Event Callback ID (*) + * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Event Callback ID + * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Event Callback ID (*) + * @arg @ref HAL_RTC_MSPINIT_CB_ID MSP Init callback ID + * @arg @ref HAL_RTC_MSPDEINIT_CB_ID MSP DeInit callback ID + * + * (*) value not applicable to all devices. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hrtc); + + if (HAL_RTC_STATE_READY == hrtc->State) + { + switch (CallbackID) + { + case HAL_RTC_ALARM_A_EVENT_CB_ID : + hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */ + break; + + case HAL_RTC_ALARM_B_EVENT_CB_ID : + hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */ + break; + + case HAL_RTC_TIMESTAMP_EVENT_CB_ID : + hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */ + break; + + case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID : + hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */ + break; + +#if defined(RTC_TAMPER1_SUPPORT) + case HAL_RTC_TAMPER1_EVENT_CB_ID : + hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */ + break; +#endif /* RTC_TAMPER1_SUPPORT */ + + case HAL_RTC_TAMPER2_EVENT_CB_ID : + hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */ + break; + +#if defined(RTC_TAMPER3_SUPPORT) + case HAL_RTC_TAMPER3_EVENT_CB_ID : + hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */ + break; +#endif /* RTC_TAMPER3_SUPPORT */ + + case HAL_RTC_MSPINIT_CB_ID : + hrtc->MspInitCallback = HAL_RTC_MspInit; + break; + + case HAL_RTC_MSPDEINIT_CB_ID : + hrtc->MspDeInitCallback = HAL_RTC_MspDeInit; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_RTC_STATE_RESET == hrtc->State) + { + switch (CallbackID) + { + case HAL_RTC_MSPINIT_CB_ID : + hrtc->MspInitCallback = HAL_RTC_MspInit; + break; + + case HAL_RTC_MSPDEINIT_CB_ID : + hrtc->MspDeInitCallback = HAL_RTC_MspDeInit; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hrtc); + + return status; +} +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + +/** + * @brief Initializes the RTC MSP. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_RTC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the RTC MSP. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_RTC_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup RTC_Exported_Functions_Group2 RTC Time and Date functions + * @brief RTC Time and Date functions + * +@verbatim + =============================================================================== + ##### RTC Time and Date functions ##### + =============================================================================== + + [..] This section provides functions allowing to configure Time and Date features + +@endverbatim + * @{ + */ + +/** + * @brief Sets RTC current time. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sTime Pointer to Time structure + * @note DayLightSaving and StoreOperation interfaces are deprecated. + * To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions. + * @param Format Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format) +{ + uint32_t tmpreg = 0U; + HAL_StatusTypeDef status; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving)); + assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + if (Format == RTC_FORMAT_BIN) + { + if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U) + { + assert_param(IS_RTC_HOUR12(sTime->Hours)); + assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat)); + } + else + { + sTime->TimeFormat = 0x00U; + assert_param(IS_RTC_HOUR24(sTime->Hours)); + } + assert_param(IS_RTC_MINUTES(sTime->Minutes)); + assert_param(IS_RTC_SECONDS(sTime->Seconds)); + + tmpreg = (uint32_t)(( (uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \ + ( (uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \ + ( (uint32_t)RTC_ByteToBcd2(sTime->Seconds)) | \ + (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos)); + } + else + { + if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U) + { + assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours))); + assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat)); + } + else + { + sTime->TimeFormat = 0x00U; + assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours))); + } + assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes))); + assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds))); + tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \ + ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \ + ((uint32_t) sTime->Seconds) | \ + ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos)); + } + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Enter Initialization mode */ + status = RTC_EnterInitMode(hrtc); + + if (status == HAL_OK) + { + /* Set the RTC_TR register */ + hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK); + + /* Clear the bits to be configured (Deprecated. Use HAL_RTC_DST_xxx functions instead) */ + hrtc->Instance->CR &= (uint32_t)~RTC_CR_BKP; + + /* Configure the RTC_CR register (Deprecated. Use HAL_RTC_DST_xxx functions instead) */ + hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation); + + /* Exit Initialization mode */ + status = RTC_ExitInitMode(hrtc); + } + + if (status == HAL_OK) + { + hrtc->State = HAL_RTC_STATE_READY; + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return status; +} + +/** + * @brief Gets RTC current time. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sTime Pointer to Time structure + * @param Format Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @note You can use SubSeconds and SecondFraction (sTime structure fields + * returned) to convert SubSeconds value in second fraction ratio with + * time unit following generic formula: + * Second fraction ratio * time_unit = + * [(SecondFraction - SubSeconds) / (SecondFraction + 1)] * time_unit + * This conversion can be performed only if no shift operation is pending + * (ie. SHFP=0) when PREDIV_S >= SS + * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the + * values in the higher-order calendar shadow registers to ensure + * consistency between the time and date values. + * Reading RTC current time locks the values in calendar shadow registers + * until current date is read to ensure consistency between the time and + * date values. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format) +{ + uint32_t tmpreg = 0U; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + + /* Get subseconds value from the corresponding register */ + sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR); + + /* Get SecondFraction structure field from the corresponding register field*/ + sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S); + + /* Get the TR register */ + tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK); + + /* Fill the structure fields with the read parameters */ + sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos); + sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos); + sTime->Seconds = (uint8_t)( tmpreg & (RTC_TR_ST | RTC_TR_SU)); + sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos); + + /* Check the input parameters format */ + if (Format == RTC_FORMAT_BIN) + { + /* Convert the time structure parameters to Binary format */ + sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours); + sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes); + sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds); + } + + return HAL_OK; +} + +/** + * @brief Sets RTC current date. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sDate Pointer to date structure + * @param Format specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format) +{ + uint32_t datetmpreg = 0U; + HAL_StatusTypeDef status; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U)) + { + sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU); + } + + assert_param(IS_RTC_WEEKDAY(sDate->WeekDay)); + + if (Format == RTC_FORMAT_BIN) + { + assert_param(IS_RTC_YEAR(sDate->Year)); + assert_param(IS_RTC_MONTH(sDate->Month)); + assert_param(IS_RTC_DATE(sDate->Date)); + + datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sDate->Date)) | \ + ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos)); + } + else + { + assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year))); + assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month))); + assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date))); + + datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \ + (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \ + ((uint32_t) sDate->Date) | \ + (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos)); + } + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Enter Initialization mode */ + status = RTC_EnterInitMode(hrtc); + + if (status == HAL_OK) + { + /* Set the RTC_DR register */ + hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK); + + /* Exit Initialization mode */ + status = RTC_ExitInitMode(hrtc); + } + + if (status == HAL_OK) + { + hrtc->State = HAL_RTC_STATE_READY; + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return status; +} + +/** + * @brief Gets RTC current date. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sDate Pointer to Date structure + * @param Format Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the + * values in the higher-order calendar shadow registers to ensure + * consistency between the time and date values. + * Reading RTC current time locks the values in calendar shadow registers + * until current date is read to ensure consistency between the time and + * date values. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format) +{ + uint32_t datetmpreg = 0U; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + + /* Get the DR register */ + datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK); + + /* Fill the structure fields with the read parameters */ + sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos); + sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos); + sDate->Date = (uint8_t) (datetmpreg & (RTC_DR_DT | RTC_DR_DU)); + sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos); + + /* Check the input parameters format */ + if (Format == RTC_FORMAT_BIN) + { + /* Convert the date structure parameters to Binary format */ + sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year); + sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month); + sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date); + } + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup RTC_Exported_Functions_Group3 RTC Alarm functions + * @brief RTC Alarm functions + * +@verbatim + =============================================================================== + ##### RTC Alarm functions ##### + =============================================================================== + + [..] This section provides functions allowing to configure Alarm feature + +@endverbatim + * @{ + */ +/** + * @brief Sets the specified RTC Alarm. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sAlarm Pointer to Alarm structure + * @param Format Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @note The Alarm register can only be written when the corresponding Alarm + * is disabled (Use the HAL_RTC_DeactivateAlarm()). + * @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format) +{ + uint32_t tickstart = 0U; + uint32_t tmpreg = 0U; + uint32_t subsecondtmpreg = 0U; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_ALARM(sAlarm->Alarm)); + assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask)); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel)); + assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds)); + assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + /* Change RTC state to BUSY */ + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Check the data format (binary or BCD) and store the Alarm time and date + configuration accordingly */ + if (Format == RTC_FORMAT_BIN) + { + if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U) + { + assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours)); + assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); + } + else + { + sAlarm->AlarmTime.TimeFormat = 0x00U; + assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours)); + } + assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes)); + assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds)); + + if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay)); + } + else + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay)); + } + + tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \ + ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \ + ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ + ((uint32_t)sAlarm->AlarmMask)); + } + else + { + if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U) + { + assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); + assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); + } + else + { + sAlarm->AlarmTime.TimeFormat = 0x00U; + assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); + } + + assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes))); + assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds))); + + if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay))); + } + else + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay))); + } + + tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \ + ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \ + ((uint32_t) sAlarm->AlarmTime.Seconds) | \ + ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \ + ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \ + ((uint32_t) sAlarm->AlarmDateWeekDaySel) | \ + ((uint32_t) sAlarm->AlarmMask)); + } + + /* Store the Alarm subseconds configuration */ + subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | \ + (uint32_t)(sAlarm->AlarmSubSecondMask)); + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + if (sAlarm->Alarm == RTC_ALARM_A) + { + /* Disable Alarm A */ + __HAL_RTC_ALARMA_DISABLE(hrtc); + + /* In case interrupt mode is used, the interrupt source must be disabled */ + __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA); + + /* Clear Alarm A flag */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRAWF flag is set and if timeout is reached exit */ + while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + /* Configure Alarm A register */ + hrtc->Instance->ALRMAR = (uint32_t)tmpreg; + /* Configure Alarm A Subseconds register */ + hrtc->Instance->ALRMASSR = subsecondtmpreg; + /* Enable Alarm A */ + __HAL_RTC_ALARMA_ENABLE(hrtc); + } + else + { + /* Disable Alarm B */ + __HAL_RTC_ALARMB_DISABLE(hrtc); + + /* In case interrupt mode is used, the interrupt source must be disabled */ + __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB); + + /* Clear Alarm B flag */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRBWF flag is set and if timeout is reached exit */ + while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + /* Configure Alarm B register */ + hrtc->Instance->ALRMBR = (uint32_t)tmpreg; + /* Configure Alarm B Subseconds register */ + hrtc->Instance->ALRMBSSR = subsecondtmpreg; + /* Enable Alarm B */ + __HAL_RTC_ALARMB_ENABLE(hrtc); + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state back to READY */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Sets the specified RTC Alarm with Interrupt. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sAlarm Pointer to Alarm structure + * @param Format Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @note The Alarm register can only be written when the corresponding Alarm + * is disabled (Use the HAL_RTC_DeactivateAlarm()). + * @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format) +{ + __IO uint32_t count = RTC_TIMEOUT_VALUE * (SystemCoreClock / 32U / 1000U); + uint32_t tmpreg = 0U; + uint32_t subsecondtmpreg = 0U; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_ALARM(sAlarm->Alarm)); + assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask)); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel)); + assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds)); + assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + /* Change RTC state to BUSY */ + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Check the data format (binary or BCD) and store the Alarm time and date + configuration accordingly */ + if (Format == RTC_FORMAT_BIN) + { + if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U) + { + assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours)); + assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); + } + else + { + sAlarm->AlarmTime.TimeFormat = 0x00U; + assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours)); + } + assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes)); + assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds)); + + if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay)); + } + else + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay)); + } + + tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \ + ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \ + ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ + ((uint32_t)sAlarm->AlarmMask)); + } + else + { + if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U) + { + assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); + assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); + } + else + { + sAlarm->AlarmTime.TimeFormat = 0x00U; + assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); + } + + assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes))); + assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds))); + + if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay))); + } + else + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay))); + } + + tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \ + ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \ + ((uint32_t) sAlarm->AlarmTime.Seconds) | \ + ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \ + ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \ + ((uint32_t) sAlarm->AlarmDateWeekDaySel) | \ + ((uint32_t) sAlarm->AlarmMask)); + } + + /* Store the Alarm subseconds configuration */ + subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | \ + (uint32_t)(sAlarm->AlarmSubSecondMask)); + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + if (sAlarm->Alarm == RTC_ALARM_A) + { + /* Disable Alarm A */ + __HAL_RTC_ALARMA_DISABLE(hrtc); + + /* Clear Alarm A flag */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF); + + /* Wait till RTC ALRAWF flag is set and if timeout is reached exit */ + do + { + count = count - 1U; + if (count == 0U) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U); + + /* Configure Alarm A register */ + hrtc->Instance->ALRMAR = (uint32_t)tmpreg; + /* Configure Alarm A Subseconds register */ + hrtc->Instance->ALRMASSR = subsecondtmpreg; + /* Enable Alarm A */ + __HAL_RTC_ALARMA_ENABLE(hrtc); + /* Enable Alarm A interrupt */ + __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRA); + } + else + { + /* Disable Alarm B */ + __HAL_RTC_ALARMB_DISABLE(hrtc); + + /* Clear Alarm B flag */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF); + + /* Reload the counter */ + count = RTC_TIMEOUT_VALUE * (SystemCoreClock / 32U / 1000U); + + /* Wait till RTC ALRBWF flag is set and if timeout is reached exit */ + do + { + count = count - 1U; + if (count == 0U) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U); + + /* Configure Alarm B register */ + hrtc->Instance->ALRMBR = (uint32_t)tmpreg; + /* Configure Alarm B Subseconds register */ + hrtc->Instance->ALRMBSSR = subsecondtmpreg; + /* Enable Alarm B */ + __HAL_RTC_ALARMB_ENABLE(hrtc); + /* Enable Alarm B interrupt */ + __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB); + } + + /* Enable and configure the EXTI line associated to the RTC Alarm interrupt */ + __HAL_RTC_ALARM_EXTI_ENABLE_IT(); + __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE(); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state back to READY */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivates the specified RTC Alarm. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Alarm Specifies the Alarm. + * This parameter can be one of the following values: + * @arg RTC_ALARM_A: Alarm A + * @arg RTC_ALARM_B: Alarm B + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm) +{ + uint32_t tickstart = 0U; + + /* Check the parameters */ + assert_param(IS_RTC_ALARM(Alarm)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + if (Alarm == RTC_ALARM_A) + { + /* Disable Alarm A */ + __HAL_RTC_ALARMA_DISABLE(hrtc); + + /* In case interrupt mode is used, the interrupt source must be disabled */ + __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRAWF flag is set and if timeout is reached exit */ + while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + } + else + { + /* Disable Alarm B */ + __HAL_RTC_ALARMB_DISABLE(hrtc); + + /* In case interrupt mode is used, the interrupt source must be disabled */ + __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRBWF flag is set and if timeout is reached exit */ + while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Gets the RTC Alarm value and masks. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sAlarm Pointer to Date structure + * @param Alarm Specifies the Alarm. + * This parameter can be one of the following values: + * @arg RTC_ALARM_A: Alarm A + * @arg RTC_ALARM_B: Alarm B + * @param Format Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format) +{ + uint32_t tmpreg = 0U; + uint32_t subsecondtmpreg = 0U; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_ALARM(Alarm)); + + if (Alarm == RTC_ALARM_A) + { + sAlarm->Alarm = RTC_ALARM_A; + + tmpreg = (uint32_t)(hrtc->Instance->ALRMAR); + subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR) & RTC_ALRMASSR_SS); + } + else + { + sAlarm->Alarm = RTC_ALARM_B; + + tmpreg = (uint32_t)(hrtc->Instance->ALRMBR); + subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS); + } + + /* Fill the structure with the read parameters */ + sAlarm->AlarmTime.Hours = (uint8_t) ((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> RTC_ALRMAR_HU_Pos); + sAlarm->AlarmTime.Minutes = (uint8_t) ((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos); + sAlarm->AlarmTime.Seconds = (uint8_t) ( tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU)); + sAlarm->AlarmTime.TimeFormat = (uint8_t) ((tmpreg & RTC_ALRMAR_PM) >> RTC_TR_PM_Pos); + sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg; + sAlarm->AlarmDateWeekDay = (uint8_t) ((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> RTC_ALRMAR_DU_Pos); + sAlarm->AlarmDateWeekDaySel = (uint32_t) (tmpreg & RTC_ALRMAR_WDSEL); + sAlarm->AlarmMask = (uint32_t) (tmpreg & RTC_ALARMMASK_ALL); + + if (Format == RTC_FORMAT_BIN) + { + sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours); + sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes); + sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds); + sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay); + } + + return HAL_OK; +} + +/** + * @brief Handles Alarm interrupt request. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc) +{ + /* Clear the EXTI flag associated to the RTC Alarm interrupt */ + __HAL_RTC_ALARM_EXTI_CLEAR_FLAG(); + + /* Get the Alarm A interrupt source enable status */ + if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA) != 0U) + { + /* Get the pending status of the Alarm A Interrupt */ + if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != 0U) + { + /* Clear the Alarm A interrupt pending bit */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF); + + /* Alarm A callback */ +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + hrtc->AlarmAEventCallback(hrtc); +#else + HAL_RTC_AlarmAEventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + } + + /* Get the Alarm B interrupt source enable status */ + if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRB) != 0U) + { + /* Get the pending status of the Alarm B Interrupt */ + if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) != 0U) + { + /* Clear the Alarm B interrupt pending bit */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF); + + /* Alarm B callback */ +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + hrtc->AlarmBEventCallback(hrtc); +#else + HAL_RTCEx_AlarmBEventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + } + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; +} + +/** + * @brief Alarm A callback. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_RTC_AlarmAEventCallback could be implemented in the user file + */ +} + +/** + * @brief Handles Alarm A Polling request. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0U; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRAF flag is set and if timeout is reached exit */ + while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == 0U) + { + if (Timeout != HAL_MAX_DELAY) + { + if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Alarm flag */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup RTC_Exported_Functions_Group4 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Wait for RTC Time and Date Synchronization + (+) Manage RTC Summer or Winter time change + +@endverbatim + * @{ + */ + +/** + * @brief Waits until the RTC Time and Date registers (RTC_TR and RTC_DR) are + * synchronized with RTC APB clock. + * @note The RTC Resynchronization mode is write protected, use the + * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function. + * @note To read the calendar through the shadow registers after Calendar + * initialization, calendar update or after wakeup from low power modes + * the software must first clear the RSF flag. + * The software must then wait until it is set again before reading + * the calendar, which means that the calendar registers have been + * correctly copied into the RTC_TR and RTC_DR shadow registers. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc) +{ + uint32_t tickstart = 0U; + + /* Clear RSF flag, keep reserved bits at reset values (setting other flags has no effect) */ + hrtc->Instance->ISR = ((uint32_t)(RTC_RSF_MASK & RTC_ISR_RESERVED_MASK)); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait the registers to be synchronised */ + while ((hrtc->Instance->ISR & RTC_ISR_RSF) == 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + return HAL_OK; +} + +/** + * @brief Daylight Saving Time, adds one hour to the calendar in one + * single operation without going through the initialization procedure. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef *hrtc) +{ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + SET_BIT(hrtc->Instance->CR, RTC_CR_ADD1H); + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); +} + +/** + * @brief Daylight Saving Time, subtracts one hour from the calendar in one + * single operation without going through the initialization procedure. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef *hrtc) +{ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + SET_BIT(hrtc->Instance->CR, RTC_CR_SUB1H); + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); +} + +/** + * @brief Daylight Saving Time, sets the store operation bit. + * @note It can be used by the software in order to memorize the DST status. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef *hrtc) +{ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + SET_BIT(hrtc->Instance->CR, RTC_CR_BKP); + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); +} + +/** + * @brief Daylight Saving Time, clears the store operation bit. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef *hrtc) +{ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + CLEAR_BIT(hrtc->Instance->CR, RTC_CR_BKP); + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); +} + +/** + * @brief Daylight Saving Time, reads the store operation bit. + * @param hrtc RTC handle + * @retval operation see RTC_StoreOperation_Definitions + */ +uint32_t HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef *hrtc) +{ + return READ_BIT(hrtc->Instance->CR, RTC_CR_BKP); +} + +/** + * @} + */ + +/** @defgroup RTC_Exported_Functions_Group5 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Get RTC state + +@endverbatim + * @{ + */ +/** + * @brief Returns the RTC state. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL state + */ +HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc) +{ + return hrtc->State; +} + +/** + * @} + */ + + +/** + * @} + */ + +/** @addtogroup RTC_Private_Functions + * @{ + */ + +/** + * @brief Enters the RTC Initialization mode. + * @note The RTC Initialization mode is write protected, use the + * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc) +{ + uint32_t tickstart = 0U; + HAL_StatusTypeDef status = HAL_OK; + + /* Check that Initialization mode is not already set */ + if (READ_BIT(hrtc->Instance->ISR, RTC_ISR_INITF) == 0U) + { + /* Set INIT bit to enter Initialization mode */ + SET_BIT(hrtc->Instance->ISR, RTC_ISR_INIT); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC is in INIT state and if timeout is reached exit */ + while ((READ_BIT(hrtc->Instance->ISR, RTC_ISR_INITF) == 0U) && (status != HAL_ERROR)) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_ERROR; + status = HAL_ERROR; + } + } + } + + return status; +} + +/** + * @brief Exits the RTC Initialization mode. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Clear INIT bit to exit Initialization mode */ + CLEAR_BIT(hrtc->Instance->ISR, RTC_ISR_INIT); + + /* If CR_BYPSHAD bit = 0, wait for synchro */ + if (READ_BIT(hrtc->Instance->CR, RTC_CR_BYPSHAD) == 0U) + { + if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) + { + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_ERROR; + status = HAL_ERROR; + } + } + + return status; +} + +/** + * @brief Converts a 2-digit number from decimal to BCD format. + * @param number decimal-formatted number (from 0 to 99) to be converted + * @retval Converted byte + */ +uint8_t RTC_ByteToBcd2(uint8_t number) +{ + uint32_t bcdhigh = 0U; + + while (number >= 10U) + { + bcdhigh++; + number -= 10U; + } + + return ((uint8_t)(bcdhigh << 4U) | number); +} + +/** + * @brief Converts a 2-digit number from BCD to decimal format. + * @param number BCD-formatted number (from 00 to 99) to be converted + * @retval Converted word + */ +uint8_t RTC_Bcd2ToByte(uint8_t number) +{ + uint32_t tens = 0U; + tens = (((uint32_t)number & 0xF0U) >> 4U) * 10U; + return (uint8_t)(tens + ((uint32_t)number & 0x0FU)); +} + +/** + * @} + */ + +#endif /* HAL_RTC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rtc_ex.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rtc_ex.c new file mode 100644 index 0000000..c7944f3 --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_hal_rtc_ex.c @@ -0,0 +1,2104 @@ +/** + ****************************************************************************** + * @file stm32wbxx_hal_rtc_ex.c + * @author MCD Application Team + * @brief Extended RTC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Real-Time Clock (RTC) Extended peripheral: + * + RTC Timestamp functions + * + RTC Tamper functions + * + RTC Wakeup functions + * + Extended Control functions + * + Extended RTC features functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (+) Enable the RTC domain access. + (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour + format using the HAL_RTC_Init() function. + + *** RTC Wakeup configuration *** + ================================ + [..] + (+) To configure the RTC Wakeup Clock source and Counter use the + HAL_RTCEx_SetWakeUpTimer() function. + You can also configure the RTC Wakeup timer in interrupt mode using the + HAL_RTCEx_SetWakeUpTimer_IT() function. + (+) To read the RTC Wakeup Counter register, use the HAL_RTCEx_GetWakeUpTimer() + function. + + *** Timestamp configuration *** + =============================== + [..] + (+) To configure the RTC Timestamp use the HAL_RTCEx_SetTimeStamp() function. + You can also configure the RTC Timestamp with interrupt mode using the + HAL_RTCEx_SetTimeStamp_IT() function. + (+) To read the RTC Timestamp Time and Date register, use the + HAL_RTCEx_GetTimeStamp() function. + (+) The Timestamp alternate function is mapped to RTC_AF1 (PC13). + + *** Internal Timestamp configuration *** + =============================== + [..] + (+) To enable the RTC internal Timestamp use the HAL_RTCEx_SetInternalTimeStamp() + function. + (+) To read the RTC Timestamp Time and Date register, use the HAL_RTCEx_GetTimeStamp() + function. + + *** Tamper configuration *** + ============================ + [..] + (+) To enable the RTC Tamper and configure the Tamper filter count, trigger + Edge or Level according to the Tamper filter value (if equal to 0 Edge + else Level), sampling frequency, NoErase, MaskFlag, precharge or + discharge and Pull-UP use the HAL_RTCEx_SetTamper() function. + You can configure RTC Tamper in interrupt mode using HAL_RTCEx_SetTamper_IT() + function. + (+) The default configuration of the Tamper erases the backup registers. + To avoid this, enable the NoErase field on the RTC_TAMPCR register. + (+) The TAMPER1 alternate function is mapped to RTC_AF1 (PC13). + (+) The TAMPER2 alternate function is mapped to RTC_AF2 (PA0). + (+) The TAMPER3 alternate function is mapped to RTC_AF3 (PC12). + + *** Backup Data Registers configuration *** + =========================================== + [..] + (+) To write to the RTC Backup Data registers, use the HAL_RTCEx_BKUPWrite() + function. + (+) To read the RTC Backup Data registers, use the HAL_RTCEx_BKUPRead() + function. + + *** Smooth Digital Calibration configuration *** + ================================================ + [..] + (+) RTC frequency can be digitally calibrated with a resolution of about + 0.954 ppm with a range from -487.1 ppm to +488.5 ppm. + The correction of the frequency is performed using a series of small + adjustments (adding and/or subtracting individual RTCCLK pulses). + (+) The smooth digital calibration is performed during a cycle of about 2^20 + RTCCLK pulses (or 32 seconds) when the input frequency is 32,768 Hz. + This cycle is maintained by a 20-bit counter clocked by RTCCLK. + (+) The smooth calibration register (RTC_CALR) specifies the number of RTCCLK + clock cycles to be masked during the 32-second cycle. + (+) To configure the RTC Smooth Digital Calibration value and the corresponding + calibration cycle period (32s,16s and 8s) use the HAL_RTCEx_SetSmoothCalib() + function. + + *** Outputs configuration *** + ============================= + [..] The RTC has 2 different outputs: + (+) RTC_ALARM: this output is used to manage the RTC alarms (Alarm A and Alarm B) + and WaKeUp signals. + To output the selected RTC signal, use the HAL_RTC_Init() function. + (+) RTC_CALIB: this output is 512Hz signal or 1Hz. + To enable the RTC_CALIB, use the HAL_RTCEx_SetCalibrationOutPut() function. + (+) Two pins can be used as RTC_ALARM or RTC_CALIB output, selected through + bit OUT_RMP of the RTC_OR register: + (+) When the RTC_CALIB or RTC_ALARM output is selected, the RTC_OUT pin is + automatically configured in output alternate function. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_hal.h" + +/** @addtogroup STM32WBxx_HAL_Driver + * @{ + */ + +/** @defgroup RTCEx RTCEx + * @brief RTC Extended HAL module driver + * @{ + */ + +#ifdef HAL_RTC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup RTCEx_Exported_Functions RTCEx Exported Functions + * @{ + */ + +/** @defgroup RTCEx_Exported_Functions_Group1 RTC Timestamp and Tamper functions + * @brief RTC Timestamp and Tamper functions + * +@verbatim + =============================================================================== + ##### RTC Timestamp and Tamper functions ##### + =============================================================================== + + [..] This section provides functions allowing to configure Timestamp feature + +@endverbatim + * @{ + */ + +/** + * @brief Sets Timestamp. + * @note This API must be called before enabling the Timestamp feature. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param RTC_TimeStampEdge Specifies the pin edge on which the Timestamp is + * activated. + * This parameter can be one of the following values: + * @arg RTC_TIMESTAMPEDGE_RISING: the Timestamp event occurs on + * the rising edge of the related pin. + * @arg RTC_TIMESTAMPEDGE_FALLING: the Timestamp event occurs on + * the falling edge of the related pin. + * @param RTC_TimeStampPin Specifies the RTC Timestamp Pin. + * This parameter can be one of the following values: + * @arg RTC_TIMESTAMPPIN_DEFAULT: PC13 is selected as RTC Timestamp Pin. + * @note Although unused, parameter RTC_TimeStampPin has been kept for portability + * reasons. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp(RTC_HandleTypeDef *hrtc, uint32_t RTC_TimeStampEdge, uint32_t RTC_TimeStampPin) +{ + uint32_t tmpreg = 0U; + + /* Check the parameters */ + assert_param(IS_TIMESTAMP_EDGE(RTC_TimeStampEdge)); + assert_param(IS_RTC_TIMESTAMP_PIN(RTC_TimeStampPin)); + + /* Prevent compilation warning due to unused argument(s) if assert_param check + is disabled */ + UNUSED(RTC_TimeStampPin); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + /* Change RTC state to BUSY */ + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Get the RTC_CR register and clear the bits to be configured */ + tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE)); + + /* Configure the Timestamp TSEDGE bit */ + tmpreg |= RTC_TimeStampEdge; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Copy the desired configuration into the CR register */ + hrtc->Instance->CR = (uint32_t)tmpreg; + + /* Clear RTC Timestamp flag */ + __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSF); + + /* Clear RTC Timestamp overrun Flag */ + __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSOVF); + + /* Enable the Timestamp saving */ + __HAL_RTC_TIMESTAMP_ENABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state back to READY */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Sets Timestamp with Interrupt. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @note This API must be called before enabling the Timestamp feature. + * @param RTC_TimeStampEdge Specifies the pin edge on which the Timestamp is + * activated. + * This parameter can be one of the following values: + * @arg RTC_TIMESTAMPEDGE_RISING: the Timestamp event occurs on + * the rising edge of the related pin. + * @arg RTC_TIMESTAMPEDGE_FALLING: the Timestamp event occurs on + * the falling edge of the related pin. + * @param RTC_TimeStampPin Specifies the RTC Timestamp Pin. + * This parameter can be one of the following values: + * @arg RTC_TIMESTAMPPIN_DEFAULT: PC13 is selected as RTC Timestamp Pin. + * @note Although unused, parameter RTC_TimeStampPin has been kept for portability + * reasons. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp_IT(RTC_HandleTypeDef *hrtc, uint32_t RTC_TimeStampEdge, uint32_t RTC_TimeStampPin) +{ + uint32_t tmpreg = 0U; + + /* Check the parameters */ + assert_param(IS_TIMESTAMP_EDGE(RTC_TimeStampEdge)); + assert_param(IS_RTC_TIMESTAMP_PIN(RTC_TimeStampPin)); + + /* Prevent compilation warning due to unused argument(s) if assert_param check + is disabled */ + UNUSED(RTC_TimeStampPin); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + /* Change RTC state to BUSY */ + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Get the RTC_CR register and clear the bits to be configured */ + tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE)); + + /* Configure the Timestamp TSEDGE bit */ + tmpreg |= RTC_TimeStampEdge; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Copy the desired configuration into the CR register */ + hrtc->Instance->CR = (uint32_t)tmpreg; + + /* Clear RTC Timestamp flag */ + __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSF); + + /* Clear RTC Timestamp overrun Flag */ + __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSOVF); + + /* Enable the Timestamp saving */ + __HAL_RTC_TIMESTAMP_ENABLE(hrtc); + + /* Enable IT Timestamp */ + __HAL_RTC_TIMESTAMP_ENABLE_IT(hrtc, RTC_IT_TS); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Enable and configure the EXTI line associated to the RTC Timestamp and Tamper interrupts */ + __HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_IT(); + __HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_RISING_EDGE(); + + /* Change RTC state back to READY */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivates Timestamp. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateTimeStamp(RTC_HandleTypeDef *hrtc) +{ + uint32_t tmpreg = 0U; + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* In case interrupt mode is used, the interrupt source must disabled */ + __HAL_RTC_TIMESTAMP_DISABLE_IT(hrtc, RTC_IT_TS); + + /* Get the RTC_CR register and clear the bits to be configured */ + tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE)); + + /* Configure the Timestamp TSEDGE and Enable bits */ + hrtc->Instance->CR = (uint32_t)tmpreg; + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Sets Internal Timestamp. + * @note This API must be called before enabling the internal Timestamp feature. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetInternalTimeStamp(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Clear the internal Timestamp flag */ + __HAL_RTC_INTERNAL_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_ITSF); + + /* Configure the internal Timestamp Enable bits */ + __HAL_RTC_INTERNAL_TIMESTAMP_ENABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivates internal Timestamp. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateInternalTimeStamp(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Configure the internal Timestamp Enable bits */ + __HAL_RTC_INTERNAL_TIMESTAMP_DISABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Gets the RTC Timestamp value. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sTimeStamp Pointer to Time structure + * @param sTimeStampDate Pointer to Date structure + * @param Format specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_GetTimeStamp(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTimeStamp, RTC_DateTypeDef *sTimeStampDate, uint32_t Format) +{ + uint32_t tmptime = 0U; + uint32_t tmpdate = 0U; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + + /* Get the Timestamp time and date registers values */ + tmptime = (uint32_t)(hrtc->Instance->TSTR & RTC_TR_RESERVED_MASK); + tmpdate = (uint32_t)(hrtc->Instance->TSDR & RTC_DR_RESERVED_MASK); + + /* Fill the Time structure fields with the read parameters */ + sTimeStamp->Hours = (uint8_t)((tmptime & (RTC_TSTR_HT | RTC_TSTR_HU)) >> RTC_TSTR_HU_Pos); + sTimeStamp->Minutes = (uint8_t)((tmptime & (RTC_TSTR_MNT | RTC_TSTR_MNU)) >> RTC_TSTR_MNU_Pos); + sTimeStamp->Seconds = (uint8_t)((tmptime & (RTC_TSTR_ST | RTC_TSTR_SU)) >> RTC_TSTR_SU_Pos); + sTimeStamp->TimeFormat = (uint8_t)((tmptime & (RTC_TSTR_PM)) >> RTC_TSTR_PM_Pos); + sTimeStamp->SubSeconds = (uint32_t) hrtc->Instance->TSSSR; + + /* Fill the Date structure fields with the read parameters */ + sTimeStampDate->Year = 0U; + sTimeStampDate->Month = (uint8_t)((tmpdate & (RTC_TSDR_MT | RTC_TSDR_MU)) >> RTC_TSDR_MU_Pos); + sTimeStampDate->Date = (uint8_t)((tmpdate & (RTC_TSDR_DT | RTC_TSDR_DU)) >> RTC_TSDR_DU_Pos); + sTimeStampDate->WeekDay = (uint8_t)((tmpdate & (RTC_TSDR_WDU)) >> RTC_TSDR_WDU_Pos); + + /* Check the input parameters format */ + if (Format == RTC_FORMAT_BIN) + { + /* Convert the Timestamp structure parameters to Binary format */ + sTimeStamp->Hours = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Hours); + sTimeStamp->Minutes = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Minutes); + sTimeStamp->Seconds = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Seconds); + + /* Convert the DateTimeStamp structure parameters to Binary format */ + sTimeStampDate->Month = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->Month); + sTimeStampDate->Date = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->Date); + sTimeStampDate->WeekDay = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->WeekDay); + } + + /* Clear the internal Timestamp Flag */ + __HAL_RTC_INTERNAL_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_ITSF); + + /* Clear the Timestamp Flag */ + __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSF); + + return HAL_OK; +} + +/** + * @brief Sets Tamper. + * @note By calling this API the tamper global interrupt will be disabled and + * the selected tamper's interrupt as well. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sTamper Pointer to Tamper Structure. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetTamper(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef *sTamper) +{ + uint32_t tmpreg = 0U; + + /* Check the parameters */ + assert_param(IS_RTC_TAMPER(sTamper->Tamper)); + assert_param(IS_RTC_TAMPER_TRIGGER(sTamper->Trigger)); + assert_param(IS_RTC_TAMPER_ERASE_MODE(sTamper->NoErase)); + assert_param(IS_RTC_TAMPER_MASKFLAG_STATE(sTamper->MaskFlag)); + assert_param(IS_RTC_TAMPER_FILTER(sTamper->Filter)); + assert_param(IS_RTC_TAMPER_FILTER_CONFIG_CORRECT(sTamper->Filter, sTamper->Trigger)); + assert_param(IS_RTC_TAMPER_SAMPLING_FREQ(sTamper->SamplingFrequency)); + assert_param(IS_RTC_TAMPER_PRECHARGE_DURATION(sTamper->PrechargeDuration)); + assert_param(IS_RTC_TAMPER_PULLUP_STATE(sTamper->TamperPullUp)); + assert_param(IS_RTC_TAMPER_TIMESTAMPONTAMPER_DETECTION(sTamper->TimeStampOnTamperDetection)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Copy control register into temporary variable */ + tmpreg = hrtc->Instance->TAMPCR; + + /* Enable selected tamper */ + tmpreg |= (sTamper->Tamper); + + /* Configure the tamper trigger bit (this bit is just on the right of the + tamper enable bit, hence the one-time right shift before updating it) */ + if (sTamper->Trigger == RTC_TAMPERTRIGGER_FALLINGEDGE) + { + /* Set the tamper trigger bit (case of falling edge or high level) */ + tmpreg |= (uint32_t)(sTamper->Tamper << 1U); + } + else + { + /* Clear the tamper trigger bit (case of rising edge or low level) */ + tmpreg &= (uint32_t)~(sTamper->Tamper << 1U); + } + + /* Configure the backup registers erasure enabling bits */ + if (sTamper->NoErase != RTC_TAMPER_ERASE_BACKUP_ENABLE) + { +#if defined(RTC_TAMPER1_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_1) != 0U) + { + tmpreg |= (uint32_t)(RTC_TAMPCR_TAMP1NOERASE); + } +#endif /* RTC_TAMPER1_SUPPORT */ + if ((sTamper->Tamper & RTC_TAMPER_2) != 0U) + { + tmpreg |= (uint32_t)(RTC_TAMPCR_TAMP2NOERASE); + } +#if defined(RTC_TAMPER3_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_3) != 0U) + { + tmpreg |= (uint32_t)(RTC_TAMPCR_TAMP3NOERASE); + } +#endif /* RTC_TAMPER3_SUPPORT */ + } + else + { +#if defined(RTC_TAMPER1_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_1) != 0U) + { + tmpreg &= (uint32_t)~(RTC_TAMPCR_TAMP1NOERASE); + } +#endif /* RTC_TAMPER1_SUPPORT */ + if ((sTamper->Tamper & RTC_TAMPER_2) != 0U) + { + tmpreg &= (uint32_t)~(RTC_TAMPCR_TAMP2NOERASE); + } +#if defined(RTC_TAMPER3_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_3) != 0U) + { + tmpreg &= (uint32_t)~(RTC_TAMPCR_TAMP3NOERASE); + } +#endif /* RTC_TAMPER3_SUPPORT */ + } + + /* Configure the tamper flags masking bits */ + if (sTamper->MaskFlag != RTC_TAMPERMASK_FLAG_DISABLE) + { +#if defined(RTC_TAMPER1_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_1) != 0U) + { + tmpreg |= (uint32_t)(RTC_TAMPCR_TAMP1MF); + } +#endif /* RTC_TAMPER1_SUPPORT */ + if ((sTamper->Tamper & RTC_TAMPER_2) != 0U) + { + tmpreg |= (uint32_t)(RTC_TAMPCR_TAMP2MF); + } +#if defined(RTC_TAMPER3_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_3) != 0U) + { + tmpreg |= (uint32_t)(RTC_TAMPCR_TAMP3MF); + } +#endif /* RTC_TAMPER3_SUPPORT */ + } + else + { +#if defined(RTC_TAMPER1_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_1) != 0U) + { + tmpreg &= (uint32_t)~(RTC_TAMPCR_TAMP1MF); + } +#endif /* RTC_TAMPER1_SUPPORT */ + if ((sTamper->Tamper & RTC_TAMPER_2) != 0U) + { + tmpreg &= (uint32_t)~(RTC_TAMPCR_TAMP2MF); + } +#if defined(RTC_TAMPER3_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_3) != 0U) + { + tmpreg &= (uint32_t)~(RTC_TAMPCR_TAMP3MF); + } +#endif /* RTC_TAMPER3_SUPPORT */ + } + + /* Clear remaining fields before setting them */ + tmpreg &= ~(RTC_TAMPERFILTER_MASK | \ + RTC_TAMPERSAMPLINGFREQ_RTCCLK_MASK | \ + RTC_TAMPERPRECHARGEDURATION_MASK | \ + RTC_TAMPER_PULLUP_MASK | \ + RTC_TIMESTAMPONTAMPERDETECTION_MASK); + + /* Set remaining parameters of desired configuration into temporary variable */ + tmpreg |= ((uint32_t)sTamper->Filter | \ + (uint32_t)sTamper->SamplingFrequency | \ + (uint32_t)sTamper->PrechargeDuration | \ + (uint32_t)sTamper->TamperPullUp | \ + (uint32_t)sTamper->TimeStampOnTamperDetection); + + /* Disable interrupt on selected tamper in case it is enabled */ +#if defined(RTC_TAMPER1_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_1) != 0U) + { + tmpreg &= (uint32_t)~RTC_IT_TAMP1; + } +#endif /* RTC_TAMPER1_SUPPORT */ + if ((sTamper->Tamper & RTC_TAMPER_2) != 0U) + { + tmpreg &= (uint32_t)~RTC_IT_TAMP2; + } +#if defined(RTC_TAMPER3_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_3) != 0U) + { + tmpreg &= (uint32_t)~RTC_IT_TAMP3; + } +#endif /* RTC_TAMPER3_SUPPORT */ + + /* Disable tamper global interrupt in case it is enabled */ + tmpreg &= (uint32_t)~RTC_TAMPCR_TAMPIE; + + /* Copy desired configuration into configuration register */ + hrtc->Instance->TAMPCR = tmpreg; + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Sets Tamper with interrupt. + * @note By setting the tamper global interrupt bit, interrupts will be + * enabled for all tampers. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sTamper Pointer to RTC Tamper. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetTamper_IT(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef *sTamper) +{ + uint32_t tmpreg = 0U; + + /* Check the parameters */ + assert_param(IS_RTC_TAMPER(sTamper->Tamper)); + assert_param(IS_RTC_TAMPER_INTERRUPT(sTamper->Interrupt)); + assert_param(IS_RTC_TAMPER_TRIGGER(sTamper->Trigger)); + assert_param(IS_RTC_TAMPER_ERASE_MODE(sTamper->NoErase)); + assert_param(IS_RTC_TAMPER_MASKFLAG_STATE(sTamper->MaskFlag)); + assert_param(IS_RTC_TAMPER_FILTER(sTamper->Filter)); + assert_param(IS_RTC_TAMPER_FILTER_CONFIG_CORRECT(sTamper->Filter, sTamper->Trigger)); + assert_param(IS_RTC_TAMPER_SAMPLING_FREQ(sTamper->SamplingFrequency)); + assert_param(IS_RTC_TAMPER_PRECHARGE_DURATION(sTamper->PrechargeDuration)); + assert_param(IS_RTC_TAMPER_PULLUP_STATE(sTamper->TamperPullUp)); + assert_param(IS_RTC_TAMPER_TIMESTAMPONTAMPER_DETECTION(sTamper->TimeStampOnTamperDetection)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Copy control register into temporary variable */ + tmpreg = hrtc->Instance->TAMPCR; + + /* Enable selected tamper */ + tmpreg |= (sTamper->Tamper); + + /* Configure the tamper trigger bit (this bit is just on the right of the + tamper enable bit, hence the one-time right shift before updating it) */ + if (sTamper->Trigger == RTC_TAMPERTRIGGER_FALLINGEDGE) + { + /* Set the tamper trigger bit (case of falling edge or high level) */ + tmpreg |= (uint32_t)(sTamper->Tamper << 1U); + } + else + { + /* Clear the tamper trigger bit (case of rising edge or low level) */ + tmpreg &= (uint32_t)~(sTamper->Tamper << 1U); + } + + /* Configure the backup registers erasure enabling bits */ + if (sTamper->NoErase != RTC_TAMPER_ERASE_BACKUP_ENABLE) + { +#if defined(RTC_TAMPER1_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_1) != 0U) + { + tmpreg |= (uint32_t)(RTC_TAMPCR_TAMP1NOERASE); + } +#endif /* RTC_TAMPER1_SUPPORT */ + if ((sTamper->Tamper & RTC_TAMPER_2) != 0U) + { + tmpreg |= (uint32_t)(RTC_TAMPCR_TAMP2NOERASE); + } +#if defined(RTC_TAMPER3_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_3) != 0U) + { + tmpreg |= (uint32_t)(RTC_TAMPCR_TAMP3NOERASE); + } +#endif /* RTC_TAMPER3_SUPPORT */ + } + else + { +#if defined(RTC_TAMPER1_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_1) != 0U) + { + tmpreg &= (uint32_t)~(RTC_TAMPCR_TAMP1NOERASE); + } +#endif /* RTC_TAMPER1_SUPPORT */ + if ((sTamper->Tamper & RTC_TAMPER_2) != 0U) + { + tmpreg &= (uint32_t)~(RTC_TAMPCR_TAMP2NOERASE); + } +#if defined(RTC_TAMPER3_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_3) != 0U) + { + tmpreg &= (uint32_t)~(RTC_TAMPCR_TAMP3NOERASE); + } +#endif /* RTC_TAMPER3_SUPPORT */ + } + + /* Configure the tamper flags masking bits */ + if (sTamper->MaskFlag != RTC_TAMPERMASK_FLAG_DISABLE) + { +#if defined(RTC_TAMPER1_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_1) != 0U) + { + tmpreg |= (uint32_t)(RTC_TAMPCR_TAMP1MF); + } +#endif /* RTC_TAMPER1_SUPPORT */ + if ((sTamper->Tamper & RTC_TAMPER_2) != 0U) + { + tmpreg |= (uint32_t)(RTC_TAMPCR_TAMP2MF); + } +#if defined(RTC_TAMPER3_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_3) != 0U) + { + tmpreg |= (uint32_t)(RTC_TAMPCR_TAMP3MF); + } +#endif /* RTC_TAMPER3_SUPPORT */ + } + else + { +#if defined(RTC_TAMPER1_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_1) != 0U) + { + tmpreg &= (uint32_t)~(RTC_TAMPCR_TAMP1MF); + } +#endif /* RTC_TAMPER1_SUPPORT */ + if ((sTamper->Tamper & RTC_TAMPER_2) != 0U) + { + tmpreg &= (uint32_t)~(RTC_TAMPCR_TAMP2MF); + } +#if defined(RTC_TAMPER3_SUPPORT) + if ((sTamper->Tamper & RTC_TAMPER_3) != 0U) + { + tmpreg &= (uint32_t)~(RTC_TAMPCR_TAMP3MF); + } +#endif /* RTC_TAMPER3_SUPPORT */ + } + + /* Clear remaining fields before setting them */ + tmpreg &= ~(RTC_TAMPERFILTER_MASK | \ + RTC_TAMPERSAMPLINGFREQ_RTCCLK_MASK | \ + RTC_TAMPERPRECHARGEDURATION_MASK | \ + RTC_TAMPER_PULLUP_MASK | \ + RTC_TIMESTAMPONTAMPERDETECTION_MASK); + + /* Set remaining parameters of desired configuration into temporary variable */ + tmpreg |= ((uint32_t)sTamper->Filter | \ + (uint32_t)sTamper->SamplingFrequency | \ + (uint32_t)sTamper->PrechargeDuration | \ + (uint32_t)sTamper->TamperPullUp | \ + (uint32_t)sTamper->TimeStampOnTamperDetection); + + /* Enable interrupt on selected tamper */ + tmpreg |= (uint32_t)sTamper->Interrupt; + + /* Copy desired configuration into configuration register */ + hrtc->Instance->TAMPCR = tmpreg; + + /* Enable and configure the EXTI line associated to the RTC Timestamp and Tamper interrupts */ + __HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_IT(); + __HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_RISING_EDGE(); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivates Tamper. + * @note By calling this API the tamper global interrupt will be disabled. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Tamper Selected tamper pin. + * This parameter can be any combination of the following values: + * @arg RTC_TAMPER_1: Tamper 1 (*) + * @arg RTC_TAMPER_2: Tamper 2 + * @arg RTC_TAMPER_3: Tamper 3 (*) + * + * (*) value not applicable to all devices. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateTamper(RTC_HandleTypeDef *hrtc, uint32_t Tamper) +{ + assert_param(IS_RTC_TAMPER(Tamper)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the selected Tamper pin */ + hrtc->Instance->TAMPCR &= (uint32_t)~Tamper; + +#if defined(RTC_TAMPER1_SUPPORT) + if ((Tamper & RTC_TAMPER_1) != 0U) + { + /* Disable the Tamper 1 interrupt */ + hrtc->Instance->TAMPCR &= (uint32_t)~(RTC_IT_TAMP | RTC_IT_TAMP1); + } +#endif /* RTC_TAMPER1_SUPPORT */ + if ((Tamper & RTC_TAMPER_2) != 0U) + { + /* Disable the Tamper 2 interrupt */ + hrtc->Instance->TAMPCR &= (uint32_t)~(RTC_IT_TAMP | RTC_IT_TAMP2); + } +#if defined(RTC_TAMPER3_SUPPORT) + if ((Tamper & RTC_TAMPER_3) != 0U) + { + /* Disable the Tamper 3 interrupt */ + hrtc->Instance->TAMPCR &= (uint32_t)~(RTC_IT_TAMP | RTC_IT_TAMP3); + } +#endif /* RTC_TAMPER3_SUPPORT */ + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Handles Timestamp and Tamper interrupt request. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTCEx_TamperTimeStampIRQHandler(RTC_HandleTypeDef *hrtc) +{ + /* Clear the EXTI flag associated to the RTC Timestamp and Tamper interrupts */ + __HAL_RTC_TAMPER_TIMESTAMP_EXTI_CLEAR_FLAG(); + + /* Get the Timestamp interrupt source enable status */ + if (__HAL_RTC_TIMESTAMP_GET_IT_SOURCE(hrtc, RTC_IT_TS) != 0U) + { + /* Get the pending status of the Timestamp Interrupt */ + if (__HAL_RTC_TIMESTAMP_GET_FLAG(hrtc, RTC_FLAG_TSF) != 0U) + { + /* Timestamp callback */ +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + hrtc->TimeStampEventCallback(hrtc); +#else + HAL_RTCEx_TimeStampEventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + + /* Clear the Timestamp interrupt pending bit after returning from callback + as RTC_TSTR and RTC_TSDR registers are cleared when TSF bit is reset */ + __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSF); + } + } + +#if defined(RTC_TAMPER1_SUPPORT) + /* Get the Tamper 1 interrupt source enable status */ + if (__HAL_RTC_TAMPER_GET_IT_SOURCE(hrtc, RTC_IT_TAMP | RTC_IT_TAMP1) != 0U) + { + /* Get the pending status of the Tamper 1 Interrupt */ + if (__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP1F) != 0U) + { + /* Clear the Tamper interrupt pending bit */ + __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP1F); + + /* Tamper callback */ +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + hrtc->Tamper1EventCallback(hrtc); +#else + HAL_RTCEx_Tamper1EventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + } +#endif /* RTC_TAMPER1_SUPPORT */ + + /* Get the Tamper 2 interrupt source enable status */ + if (__HAL_RTC_TAMPER_GET_IT_SOURCE(hrtc, RTC_IT_TAMP | RTC_IT_TAMP2) != 0U) + { + /* Get the pending status of the Tamper 2 Interrupt */ + if (__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP2F) != 0U) + { + /* Clear the Tamper interrupt pending bit */ + __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP2F); + + /* Tamper callback */ +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + hrtc->Tamper2EventCallback(hrtc); +#else + HAL_RTCEx_Tamper2EventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + } + +#if defined(RTC_TAMPER3_SUPPORT) + /* Get the Tamper 3 interrupt source enable status */ + if (__HAL_RTC_TAMPER_GET_IT_SOURCE(hrtc, RTC_IT_TAMP | RTC_IT_TAMP3) != 0U) + { + /* Get the pending status of the Tamper 3 Interrupt */ + if (__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP3F) != 0U) + { + /* Clear the Tamper interrupt pending bit */ + __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP3F); + + /* Tamper callback */ +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + hrtc->Tamper3EventCallback(hrtc); +#else + HAL_RTCEx_Tamper3EventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + } +#endif /* RTC_TAMPER3_SUPPORT */ + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; +} + +/** + * @brief Timestamp callback. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTCEx_TimeStampEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_RTCEx_TimeStampEventCallback could be implemented in the user file + */ +} + +#if defined(RTC_TAMPER1_SUPPORT) +/** + * @brief Tamper 1 callback. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTCEx_Tamper1EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_RTCEx_Tamper1EventCallback could be implemented in the user file + */ +} +#endif /* RTC_TAMPER1_SUPPORT */ + +/** + * @brief Tamper 2 callback. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTCEx_Tamper2EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_RTCEx_Tamper2EventCallback could be implemented in the user file + */ +} + +#if defined(RTC_TAMPER3_SUPPORT) +/** + * @brief Tamper 3 callback. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTCEx_Tamper3EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_RTCEx_Tamper3EventCallback could be implemented in the user file + */ +} +#endif /* RTC_TAMPER3_SUPPORT */ + +/** + * @brief Handles Timestamp polling request. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForTimeStampEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0U; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while (__HAL_RTC_TIMESTAMP_GET_FLAG(hrtc, RTC_FLAG_TSF) == 0U) + { + if (Timeout != HAL_MAX_DELAY) + { + if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + + if (__HAL_RTC_TIMESTAMP_GET_FLAG(hrtc, RTC_FLAG_TSOVF) != 0U) + { + /* Clear the Timestamp Overrun Flag */ + __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSOVF); + + /* Change Timestamp state */ + hrtc->State = HAL_RTC_STATE_ERROR; + + return HAL_ERROR; + } + } + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +#if defined(RTC_TAMPER1_SUPPORT) +/** + * @brief Handles Tamper 1 Polling. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForTamper1Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0U; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Get the status of the Interrupt */ + while (__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP1F) == 0U) + { + if (Timeout != HAL_MAX_DELAY) + { + if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Tamper Flag */ + __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP1F); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} +#endif /* RTC_TAMPER1_SUPPORT */ + +/** + * @brief Handles Tamper 2 Polling. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForTamper2Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0U; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Get the status of the Interrupt */ + while (__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP2F) == 0U) + { + if (Timeout != HAL_MAX_DELAY) + { + if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Tamper Flag */ + __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP2F); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +#if defined(RTC_TAMPER3_SUPPORT) +/** + * @brief Handles Tamper 3 Polling. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForTamper3Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = HAL_GetTick(); + + /* Get the status of the Interrupt */ + while (__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP3F) == 0U) + { + if (Timeout != HAL_MAX_DELAY) + { + if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Tamper Flag */ + __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP3F); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} +#endif /* RTC_TAMPER3_SUPPORT */ + +/** + * @} + */ + +/** @defgroup RTCEx_Exported_Functions_Group2 RTC Wakeup functions + * @brief RTC Wakeup functions + * +@verbatim + =============================================================================== + ##### RTC Wakeup functions ##### + =============================================================================== + + [..] This section provides functions allowing to configure Wakeup feature + +@endverbatim + * @{ + */ + +/** + * @brief Sets wakeup timer. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param WakeUpCounter Wakeup counter + * @param WakeUpClock Wakeup clock + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer(RTC_HandleTypeDef *hrtc, uint32_t WakeUpCounter, uint32_t WakeUpClock) +{ + uint32_t tickstart = 0U; + + /* Check the parameters */ + assert_param(IS_RTC_WAKEUP_CLOCK(WakeUpClock)); + assert_param(IS_RTC_WAKEUP_COUNTER(WakeUpCounter)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Check RTC WUTWF flag is reset only when wakeup timer enabled*/ + if ((hrtc->Instance->CR & RTC_CR_WUTE) != 0U) + { + tickstart = HAL_GetTick(); + + /* Wait till RTC WUTWF flag is reset and if timeout is reached exit */ + while (__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) != 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + } + + /* Disable the Wakeup timer */ + __HAL_RTC_WAKEUPTIMER_DISABLE(hrtc); + + /* Clear the Wakeup flag */ + __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(hrtc, RTC_FLAG_WUTF); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC WUTWF flag is set and if timeout is reached exit */ + while (__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + /* Clear the Wakeup Timer clock source bits in CR register */ + hrtc->Instance->CR &= (uint32_t)~RTC_CR_WUCKSEL; + + /* Configure the clock source */ + hrtc->Instance->CR |= (uint32_t)WakeUpClock; + + /* Configure the Wakeup Timer counter */ + hrtc->Instance->WUTR = (uint32_t)WakeUpCounter; + + /* Enable the Wakeup Timer */ + __HAL_RTC_WAKEUPTIMER_ENABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Sets wakeup timer with interrupt. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param WakeUpCounter Wakeup counter + * @param WakeUpClock Wakeup clock + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer_IT(RTC_HandleTypeDef *hrtc, uint32_t WakeUpCounter, uint32_t WakeUpClock) +{ + __IO uint32_t count = RTC_TIMEOUT_VALUE * (SystemCoreClock / 32U / 1000U); + + /* Check the parameters */ + assert_param(IS_RTC_WAKEUP_CLOCK(WakeUpClock)); + assert_param(IS_RTC_WAKEUP_COUNTER(WakeUpCounter)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Check RTC WUTWF flag is reset only when wakeup timer enabled */ + if ((hrtc->Instance->CR & RTC_CR_WUTE) != 0U) + { + /* Wait till RTC WUTWF flag is reset and if timeout is reached exit */ + do + { + count = count - 1U; + if (count == 0U) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } while (__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) != 0U); + } + + /* Disable the Wakeup timer */ + __HAL_RTC_WAKEUPTIMER_DISABLE(hrtc); + + /* Clear the Wakeup flag */ + __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(hrtc, RTC_FLAG_WUTF); + + /* Reload the counter */ + count = RTC_TIMEOUT_VALUE * (SystemCoreClock / 32U / 1000U); + + /* Wait till RTC WUTWF flag is set and if timeout is reached exit */ + do + { + count = count - 1U; + if (count == 0U) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } while (__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == 0U); + + /* Clear the Wakeup Timer clock source bits in CR register */ + hrtc->Instance->CR &= (uint32_t)~RTC_CR_WUCKSEL; + + /* Configure the clock source */ + hrtc->Instance->CR |= (uint32_t)WakeUpClock; + + /* Configure the Wakeup Timer counter */ + hrtc->Instance->WUTR = (uint32_t)WakeUpCounter; + + /* Enable and configure the EXTI line associated to the RTC Wakeup Timer interrupt */ + __HAL_RTC_WAKEUPTIMER_EXTI_ENABLE_IT(); + __HAL_RTC_WAKEUPTIMER_EXTI_ENABLE_RISING_EDGE(); + + /* Configure the interrupt in the RTC_CR register */ + __HAL_RTC_WAKEUPTIMER_ENABLE_IT(hrtc, RTC_IT_WUT); + + /* Enable the Wakeup Timer */ + __HAL_RTC_WAKEUPTIMER_ENABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivates wakeup timer counter. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateWakeUpTimer(RTC_HandleTypeDef *hrtc) +{ + uint32_t tickstart = 0U; + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Disable the Wakeup Timer */ + __HAL_RTC_WAKEUPTIMER_DISABLE(hrtc); + + /* In case interrupt mode is used, the interrupt source must disabled */ + __HAL_RTC_WAKEUPTIMER_DISABLE_IT(hrtc, RTC_IT_WUT); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC WUTWF flag is set and if timeout is reached exit */ + while (__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Gets wakeup timer counter. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval Counter value + */ +uint32_t HAL_RTCEx_GetWakeUpTimer(RTC_HandleTypeDef *hrtc) +{ + /* Get the counter value */ + return ((uint32_t)(hrtc->Instance->WUTR & RTC_WUTR_WUT)); +} + +/** + * @brief Handles Wakeup Timer interrupt request. + * @note Unlike alarm interrupt line (shared by Alarms A and B) or tamper + * interrupt line (shared by timestamp and tampers) wakeup timer + * interrupt line is exclusive to the wakeup timer. + * There is no need in this case to check on the interrupt enable + * status via __HAL_RTC_WAKEUPTIMER_GET_IT_SOURCE(). + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTCEx_WakeUpTimerIRQHandler(RTC_HandleTypeDef *hrtc) +{ + /* Clear the EXTI flag associated to the RTC Wakeup Timer interrupt */ + __HAL_RTC_WAKEUPTIMER_EXTI_CLEAR_FLAG(); + + /* Get the pending status of the Wakeup timer Interrupt */ + if (__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTF) != 0U) + { + /* Clear the Wakeup timer interrupt pending bit */ + __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(hrtc, RTC_FLAG_WUTF); + + /* Wakeup timer callback */ +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + hrtc->WakeUpTimerEventCallback(hrtc); +#else + HAL_RTCEx_WakeUpTimerEventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; +} + +/** + * @brief Wakeup Timer callback. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTCEx_WakeUpTimerEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_RTCEx_WakeUpTimerEventCallback could be implemented in the user file + */ +} + +/** + * @brief Handles Wakeup Timer Polling. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForWakeUpTimerEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0U; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while (__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTF) == 0U) + { + if (Timeout != HAL_MAX_DELAY) + { + if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Wakeup timer Flag */ + __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(hrtc, RTC_FLAG_WUTF); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup RTCEx_Exported_Functions_Group3 Extended Peripheral Control functions + * @brief Extended Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Extended Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Write a data in a specified RTC Backup data register + (+) Read a data in a specified RTC Backup data register + (+) Set the Smooth calibration parameters. + (+) Configure the Synchronization Shift Control Settings. + (+) Configure the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). + (+) Deactivate the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). + (+) Enable the RTC reference clock detection. + (+) Disable the RTC reference clock detection. + (+) Enable the Bypass Shadow feature. + (+) Disable the Bypass Shadow feature. + +@endverbatim + * @{ + */ + +/** + * @brief Writes a data in a specified RTC Backup data register. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param BackupRegister RTC Backup data Register number. + * This parameter can be: RTC_BKP_DRx (where x can be from 0 to 19) + * to specify the register. + * @param Data Data to be written in the specified RTC Backup data register. + * @retval None + */ +void HAL_RTCEx_BKUPWrite(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister, uint32_t Data) +{ + uint32_t tmp = 0U; + + /* Check the parameters */ + assert_param(IS_RTC_BKP(BackupRegister)); + + tmp = (uint32_t) &(hrtc->Instance->BKP0R); + tmp += (BackupRegister * 4U); + + /* Write the specified register */ + *(__IO uint32_t *)tmp = (uint32_t)Data; +} + +/** + * @brief Reads data from the specified RTC Backup data Register. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param BackupRegister RTC Backup data Register number. + * This parameter can be: RTC_BKP_DRx (where x can be from 0 to 19) + * to specify the register. + * @retval Read value + */ +uint32_t HAL_RTCEx_BKUPRead(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister) +{ + uint32_t tmp = 0U; + + /* Check the parameters */ + assert_param(IS_RTC_BKP(BackupRegister)); + + tmp = (uint32_t) &(hrtc->Instance->BKP0R); + tmp += (BackupRegister * 4U); + + /* Read the specified register */ + return (*(__IO uint32_t *)tmp); +} + +/** + * @brief Sets the Smooth calibration parameters. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param SmoothCalibPeriod Select the Smooth Calibration Period. + * This parameter can be can be one of the following values: + * @arg RTC_SMOOTHCALIB_PERIOD_32SEC: The smooth calibration period is 32s. + * @arg RTC_SMOOTHCALIB_PERIOD_16SEC: The smooth calibration period is 16s. + * @arg RTC_SMOOTHCALIB_PERIOD_8SEC: The smooth calibration period is 8s. + * @param SmoothCalibPlusPulses Select to Set or reset the CALP bit. + * This parameter can be one of the following values: + * @arg RTC_SMOOTHCALIB_PLUSPULSES_SET: Add one RTCCLK pulse every 2*11 pulses. + * @arg RTC_SMOOTHCALIB_PLUSPULSES_RESET: No RTCCLK pulses are added. + * @param SmoothCalibMinusPulsesValue Select the value of CALM[8:0] bits. + * This parameter can be one any value from 0 to 0x000001FF. + * @note To deactivate the smooth calibration, the field SmoothCalibPlusPulses + * must be equal to SMOOTHCALIB_PLUSPULSES_RESET and the field + * SmoothCalibMinusPulsesValue must be equal to 0. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetSmoothCalib(RTC_HandleTypeDef *hrtc, uint32_t SmoothCalibPeriod, uint32_t SmoothCalibPlusPulses, uint32_t SmoothCalibMinusPulsesValue) +{ + uint32_t tickstart = 0U; + + /* Check the parameters */ + assert_param(IS_RTC_SMOOTH_CALIB_PERIOD(SmoothCalibPeriod)); + assert_param(IS_RTC_SMOOTH_CALIB_PLUS(SmoothCalibPlusPulses)); + assert_param(IS_RTC_SMOOTH_CALIB_MINUS(SmoothCalibMinusPulsesValue)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* check if a calibration is pending*/ + if ((hrtc->Instance->ISR & RTC_ISR_RECALPF) != 0U) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + /* check if a calibration is pending*/ + while ((hrtc->Instance->ISR & RTC_ISR_RECALPF) != 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + } + + /* Configure the Smooth calibration settings */ + hrtc->Instance->CALR = (uint32_t)((uint32_t)SmoothCalibPeriod | \ + (uint32_t)SmoothCalibPlusPulses | \ + (uint32_t)SmoothCalibMinusPulsesValue); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Configures the Synchronization Shift Control Settings. + * @note When REFCKON is set, firmware must not write to Shift control register. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param ShiftAdd1S Select to add or not 1 second to the time calendar. + * This parameter can be one of the following values: + * @arg RTC_SHIFTADD1S_SET: Add one second to the clock calendar. + * @arg RTC_SHIFTADD1S_RESET: No effect. + * @param ShiftSubFS Select the number of Second Fractions to substitute. + * This parameter can be one any value from 0 to 0x7FFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetSynchroShift(RTC_HandleTypeDef *hrtc, uint32_t ShiftAdd1S, uint32_t ShiftSubFS) +{ + uint32_t tickstart = 0U; + + /* Check the parameters */ + assert_param(IS_RTC_SHIFT_ADD1S(ShiftAdd1S)); + assert_param(IS_RTC_SHIFT_SUBFS(ShiftSubFS)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until the shift is completed */ + while ((hrtc->Instance->ISR & RTC_ISR_SHPF) != 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + /* Check if the reference clock detection is disabled */ + if ((hrtc->Instance->CR & RTC_CR_REFCKON) == 0U) + { + /* Configure the Shift settings */ + hrtc->Instance->SHIFTR = (uint32_t)(uint32_t)(ShiftSubFS) | (uint32_t)(ShiftAdd1S); + + /* If RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ + if ((hrtc->Instance->CR & RTC_CR_BYPSHAD) == 0U) + { + if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + } + } + else + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Configures the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param CalibOutput Select the Calibration output Selection. + * This parameter can be one of the following values: + * @arg RTC_CALIBOUTPUT_512HZ: A signal has a regular waveform at 512Hz. + * @arg RTC_CALIBOUTPUT_1HZ: A signal has a regular waveform at 1Hz. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetCalibrationOutPut(RTC_HandleTypeDef *hrtc, uint32_t CalibOutput) +{ + /* Check the parameters */ + assert_param(IS_RTC_CALIB_OUTPUT(CalibOutput)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Clear flags before config */ + hrtc->Instance->CR &= (uint32_t)~RTC_CR_COSEL; + + /* Configure the RTC_CR register */ + hrtc->Instance->CR |= (uint32_t)CalibOutput; + + __HAL_RTC_CALIBRATION_OUTPUT_ENABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivates the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateCalibrationOutPut(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + __HAL_RTC_CALIBRATION_OUTPUT_DISABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Enables the RTC reference clock detection. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetRefClock(RTC_HandleTypeDef *hrtc) +{ + HAL_StatusTypeDef status; + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Enter Initialization mode */ + status = RTC_EnterInitMode(hrtc); + + if (status == HAL_OK) + { + /* Enable the reference clock detection */ + __HAL_RTC_CLOCKREF_DETECTION_ENABLE(hrtc); + + /* Exit Initialization mode */ + status = RTC_ExitInitMode(hrtc); + } + + if (status == HAL_OK) + { + hrtc->State = HAL_RTC_STATE_READY; + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return status; +} + +/** + * @brief Disable the RTC reference clock detection. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateRefClock(RTC_HandleTypeDef *hrtc) +{ + HAL_StatusTypeDef status; + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Enter Initialization mode */ + status = RTC_EnterInitMode(hrtc); + + if (status == HAL_OK) + { + /* Disable the reference clock detection */ + __HAL_RTC_CLOCKREF_DETECTION_DISABLE(hrtc); + + /* Exit Initialization mode */ + status = RTC_ExitInitMode(hrtc); + } + + if (status == HAL_OK) + { + hrtc->State = HAL_RTC_STATE_READY; + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return status; +} + +/** + * @brief Enables the Bypass Shadow feature. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @note When the Bypass Shadow is enabled the calendar value are taken + * directly from the Calendar counter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_EnableBypassShadow(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set the BYPSHAD bit */ + hrtc->Instance->CR |= (uint32_t)RTC_CR_BYPSHAD; + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Disables the Bypass Shadow feature. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @note When the Bypass Shadow is enabled the calendar value are taken + * directly from the Calendar counter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DisableBypassShadow(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Reset the BYPSHAD bit */ + hrtc->Instance->CR &= (uint32_t)~RTC_CR_BYPSHAD; + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup RTCEx_Exported_Functions_Group4 Extended features functions + * @brief Extended features functions + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) RTC Alarm B callback + (+) RTC Poll for Alarm B request + +@endverbatim + * @{ + */ + +/** + * @brief Alarm B callback. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTCEx_AlarmBEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_RTCEx_AlarmBEventCallback could be implemented in the user file + */ +} + +/** + * @brief Handles Alarm B Polling request. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForAlarmBEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0U; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRBF flag is set and if timeout is reached exit */ + while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) == 0U) + { + if (Timeout != HAL_MAX_DELAY) + { + if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Alarm flag */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_RTC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_rcc.c b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_rcc.c new file mode 100644 index 0000000..0219ee8 --- /dev/null +++ b/firmware/memory_chip_gone/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_rcc.c @@ -0,0 +1,1361 @@ +/** + ****************************************************************************** + * @file stm32wbxx_ll_rcc.c + * @author MCD Application Team + * @brief RCC LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2019 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32wbxx_ll_rcc.h" +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32WBxx_LL_Driver + * @{ + */ + +#if defined(RCC) + +/** @addtogroup RCC_LL + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup RCC_LL_Private_Macros + * @{ + */ +#define IS_LL_RCC_USART_CLKSOURCE(__VALUE__) ((__VALUE__) == LL_RCC_USART1_CLKSOURCE) + +#if defined(LPUART1) +#define IS_LL_RCC_LPUART_CLKSOURCE(__VALUE__) ((__VALUE__) == LL_RCC_LPUART1_CLKSOURCE) +#endif /* LPUART1 */ + +#if defined(I2C3) +#define IS_LL_RCC_I2C_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_I2C1_CLKSOURCE) \ + || ((__VALUE__) == LL_RCC_I2C3_CLKSOURCE)) +#else +#define IS_LL_RCC_I2C_CLKSOURCE(__VALUE__) ((__VALUE__) == LL_RCC_I2C1_CLKSOURCE) +#endif /* I2C3 */ + +#define IS_LL_RCC_LPTIM_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_LPTIM1_CLKSOURCE) \ + || ((__VALUE__) == LL_RCC_LPTIM2_CLKSOURCE)) + +#if defined(SAI1) +#define IS_LL_RCC_SAI_CLKSOURCE(__VALUE__) ((__VALUE__) == LL_RCC_SAI1_CLKSOURCE) +#endif /* SAI1 */ + +#define IS_LL_RCC_RNG_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_RNG_CLKSOURCE)) + +#define IS_LL_RCC_CLK48_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_CLK48_CLKSOURCE)) + +#if defined(USB) +#define IS_LL_RCC_USB_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USB_CLKSOURCE)) +#endif /* USB */ + +#define IS_LL_RCC_ADC_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_ADC_CLKSOURCE)) + +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup RCC_LL_Private_Functions RCC Private functions + * @{ + */ +static uint32_t RCC_PLL_GetFreqDomain_SYS(void); +#if defined(SAI1) +static uint32_t RCC_PLL_GetFreqDomain_SAI(void); +#endif /* SAI1 */ +static uint32_t RCC_PLL_GetFreqDomain_ADC(void); +static uint32_t RCC_PLL_GetFreqDomain_48M(void); + +#if defined(SAI1) +static uint32_t RCC_PLLSAI1_GetFreqDomain_SAI(void); +static uint32_t RCC_PLLSAI1_GetFreqDomain_48M(void); +static uint32_t RCC_PLLSAI1_GetFreqDomain_ADC(void); +#endif /* SAI1 */ + + +static uint32_t RCC_GetSystemClockFreq(void); + + +static uint32_t RCC_GetHCLK1ClockFreq(uint32_t SYSCLK_Frequency); +static uint32_t RCC_GetHCLK2ClockFreq(uint32_t SYSCLK_Frequency); +static uint32_t RCC_GetHCLK4ClockFreq(uint32_t SYSCLK_Frequency); +static uint32_t RCC_GetHCLK5ClockFreq(void); + + +static uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency); +static uint32_t RCC_GetPCLK2ClockFreq(uint32_t HCLK_Frequency); +/** + * @} + */ + + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup RCC_LL_Exported_Functions + * @{ + */ + +/** @addtogroup RCC_LL_EF_Init + * @{ + */ + +/** + * @brief Reset the RCC clock to the default reset state. + * @note The default reset state of the clock configuration is given below: + * - MSI ON and used as system clock source + * - HSE, HSI, HSI48, PLL and PLLSAI1 Source OFF + * - CPU1, CPU2, AHB4, APB1 and APB2 prescaler set to 1. + * - CSS, MCO OFF + * - All interrupts disabled + * @note This function doesn't modify the configuration of the + * - Peripheral clocks + * - LSI, LSE and RTC clocks + * @retval An ErrorStatus enumeration value: + * - SUCCESS: RCC registers are de-initialized + * - ERROR: not applicable + */ +ErrorStatus LL_RCC_DeInit(void) +{ + uint32_t vl_mask; + + /* Set MSION bit */ + LL_RCC_MSI_Enable(); + + /* Insure MSIRDY bit is set before writing default MSIRANGE value */ + while (LL_RCC_MSI_IsReady() == 0U) + {} + + /* Set MSIRANGE default value */ + LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_6); + + /* Set MSITRIM bits to the reset value*/ + LL_RCC_MSI_SetCalibTrimming(0); + + /* Set HSITRIM bits to the reset value*/ + LL_RCC_HSI_SetCalibTrimming(0x40U); + + /* Reset CFGR register */ + LL_RCC_WriteReg(CFGR, 0x00070000U); /* MSI selected as System Clock and all prescaler to not divided */ + + /* Wait for MSI oscillator used as system clock */ + while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI) + {} + + /* Write new mask in CR register */ + LL_RCC_WriteReg(CR, 0x00000061); + + /* Wait for PLL READY bit to be reset */ + while (LL_RCC_PLL_IsReady() != 0U) + {} + + /* Reset PLLCFGR register */ + LL_RCC_WriteReg(PLLCFGR, 0x22041000U); + +#if defined(SAI1) + /* Wait for PLLSAI READY bit to be reset */ + while (LL_RCC_PLLSAI1_IsReady() != 0U) + {} + + /* Reset PLLSAI1CFGR register */ + LL_RCC_WriteReg(PLLSAI1CFGR, 0x22041000U); +#endif /* SAI1 */ + + /* Disable all interrupts */ + LL_RCC_WriteReg(CIER, 0x00000000U); + + /* Clear all interrupt flags */ + vl_mask = RCC_CICR_LSI1RDYC | RCC_CICR_LSERDYC | RCC_CICR_MSIRDYC | RCC_CICR_HSIRDYC | RCC_CICR_HSERDYC | + RCC_CICR_PLLRDYC | RCC_CICR_CSSC | RCC_CICR_LSECSSC | RCC_CICR_LSI2RDYC; + +#if defined(SAI1) + vl_mask |= RCC_CICR_PLLSAI1RDYC; +#endif /* SAI1 */ + +#if defined(RCC_HSI48_SUPPORT) + vl_mask |= RCC_CICR_HSI48RDYC; +#endif /* RCC_HSI48_SUPPORT */ + + LL_RCC_WriteReg(CICR, vl_mask); + + /* Clear reset flags */ + LL_RCC_ClearResetFlags(); + +#if defined(RCC_SMPS_SUPPORT) + /* SMPS reset */ + LL_RCC_WriteReg(SMPSCR, 0x00000301U); /* MSI default clock source */ +#endif /* RCC_SMPS_SUPPORT */ + + /* RF Wakeup Clock Source selection */ + LL_RCC_SetRFWKPClockSource(LL_RCC_RFWKP_CLKSOURCE_NONE); + +#if defined(RCC_HSI48_SUPPORT) + /* HSI48 reset */ + LL_RCC_HSI48_Disable(); +#endif /* RCC_HSI48_SUPPORT */ + + /* HSECR register write unlock & then reset*/ + LL_RCC_WriteReg(HSECR, HSE_CONTROL_UNLOCK_KEY); + LL_RCC_WriteReg(HSECR, LL_RCC_HSE_CURRENTMAX_3); /* HSEGMC set to default value 011, current max limit 1.13 mA/V */ + + /* EXTCFGR reset*/ + LL_RCC_WriteReg(EXTCFGR, 0x00030000U); + + return SUCCESS; +} + +/** + * @} + */ + +/** @addtogroup RCC_LL_EF_Get_Freq + * @brief Return the frequencies of different on chip clocks; System, AHB, APB1 and APB2 buses clocks + * and different peripheral clocks available on the device. + * @note If SYSCLK source is MSI, function returns values based on MSI values(*) + * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(**) + * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(***) + * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(***) + * or HSI_VALUE(**) or MSI values(*) multiplied/divided by the PLL factors. + * @note (*) MSI values are retrieved thanks to __LL_RCC_CALC_MSI_FREQ macro + * @note (**) HSI_VALUE is a constant defined in this file (default value + * 16 MHz) but the real value may vary depending on the variations + * in voltage and temperature. + * @note (***) HSE_VALUE is a constant defined in this file (default value + * 32 MHz), user has to ensure that HSE_VALUE is same as the real + * frequency of the crystal used. Otherwise, this function may + * have wrong result. + * @note The result of this function could be incorrect when using fractional + * value for HSE crystal. + * @note This function can be used by the user application to compute the + * baud-rate for the communication peripherals or configure other parameters. + * @{ + */ + +/** + * @brief Return the frequencies of different on chip clocks; System, AHB, APB1 and APB2 buses clocks + * @note Each time SYSCLK, HCLK, PCLK1 and/or PCLK2 clock changes, this function + * must be called to update structure fields. Otherwise, any + * configuration based on this function will be incorrect. + * @param RCC_Clocks pointer to a @ref LL_RCC_ClocksTypeDef structure which will hold the clocks frequencies + * @retval None + */ +void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks) +{ + /* Get SYSCLK frequency */ + RCC_Clocks->SYSCLK_Frequency = RCC_GetSystemClockFreq(); + + /* HCLK1 clock frequency */ + RCC_Clocks->HCLK1_Frequency = RCC_GetHCLK1ClockFreq(RCC_Clocks->SYSCLK_Frequency); + + /* HCLK2 clock frequency */ + RCC_Clocks->HCLK2_Frequency = RCC_GetHCLK2ClockFreq(RCC_Clocks->SYSCLK_Frequency); + + /* HCLK4 clock frequency */ + RCC_Clocks->HCLK4_Frequency = RCC_GetHCLK4ClockFreq(RCC_Clocks->SYSCLK_Frequency); + + /* HCLK5 clock frequency */ + RCC_Clocks->HCLK5_Frequency = RCC_GetHCLK5ClockFreq(); + + /* PCLK1 clock frequency */ + RCC_Clocks->PCLK1_Frequency = RCC_GetPCLK1ClockFreq(RCC_Clocks->HCLK1_Frequency); + + /* PCLK2 clock frequency */ + RCC_Clocks->PCLK2_Frequency = RCC_GetPCLK2ClockFreq(RCC_Clocks->HCLK1_Frequency); +} + +#if defined(RCC_SMPS_SUPPORT) +/** + * @brief Return SMPS clock frequency + * @note This function is only applicable when CPU runs, + * When waking up from Standby mode and powering on the VCODE supply, the HSI is + * selected as SMPS Step Down converter clock, independent from the selection in + * SMPSSEL. + * @retval SMPS clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready + */ +uint32_t LL_RCC_GetSMPSClockFreq(void) +{ + uint32_t smps_frequency; + uint32_t smps_prescaler_index = ((LL_RCC_GetSMPSPrescaler()) >> RCC_SMPSCR_SMPSDIV_Pos); + uint32_t smpsClockSource = LL_RCC_GetSMPSClockSource(); + + if (smpsClockSource == LL_RCC_SMPS_CLKSOURCE_STATUS_HSI) /* SMPS Clock source is HSI Osc. */ + { + if (LL_RCC_HSI_IsReady() == 1U) + { + smps_frequency = HSI_VALUE / SmpsPrescalerTable[smps_prescaler_index][0]; + } + else + { + smps_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + } + } + else if (smpsClockSource == LL_RCC_SMPS_CLKSOURCE_STATUS_HSE) /* SMPS Clock source is HSE Osc. */ + { + if (LL_RCC_HSE_IsReady() == 1U) + { + smps_frequency = HSE_VALUE / SmpsPrescalerTable[smps_prescaler_index][5]; + } + else + { + smps_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + } + } + else if (smpsClockSource == LL_RCC_SMPS_CLKSOURCE_STATUS_MSI) /* SMPS Clock source is MSI Osc. */ + { + uint32_t msiRange = LL_RCC_MSI_GetRange(); + + if (msiRange == LL_RCC_MSIRANGE_8) + { + smps_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGE_8) / SmpsPrescalerTable[smps_prescaler_index][4]; + } + else if (msiRange == LL_RCC_MSIRANGE_9) + { + smps_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGE_9) / SmpsPrescalerTable[smps_prescaler_index][3]; + } + else if (msiRange == LL_RCC_MSIRANGE_10) + { + smps_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGE_10) / SmpsPrescalerTable[smps_prescaler_index][2]; + } + else if (msiRange == LL_RCC_MSIRANGE_11) + { + smps_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGE_11) / SmpsPrescalerTable[smps_prescaler_index][1]; + } + else + { + smps_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + } + } + else /* SMPS has no Clock */ + { + smps_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + } + + if (smps_frequency != LL_RCC_PERIPH_FREQUENCY_NO) + { + /* Systematic div by 2 */ + smps_frequency = smps_frequency >> 1U; + } + + return smps_frequency; +} +#endif /* RCC_SMPS_SUPPORT */ + +/** + * @brief Return USARTx clock frequency + * @param USARTxSource This parameter can be one of the following values: + * @arg @ref LL_RCC_USART1_CLKSOURCE + * @retval USART clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready + */ +uint32_t LL_RCC_GetUSARTClockFreq(uint32_t USARTxSource) +{ + uint32_t usart_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + + /* Check parameter */ + assert_param(IS_LL_RCC_USART_CLKSOURCE(USARTxSource)); + + /* USART1CLK clock frequency */ + switch (LL_RCC_GetUSARTClockSource(USARTxSource)) + { + case LL_RCC_USART1_CLKSOURCE_SYSCLK: /* USART1 Clock is System Clock */ + usart_frequency = RCC_GetSystemClockFreq(); + break; + + case LL_RCC_USART1_CLKSOURCE_HSI: /* USART1 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady() == 1U) + { + usart_frequency = HSI_VALUE; + } + break; + + case LL_RCC_USART1_CLKSOURCE_LSE: /* USART1 Clock is LSE Osc. */ + if (LL_RCC_LSE_IsReady() == 1U) + { + usart_frequency = LSE_VALUE; + } + break; + + case LL_RCC_USART1_CLKSOURCE_PCLK2: /* USART1 Clock is PCLK2 */ + default: + usart_frequency = RCC_GetPCLK2ClockFreq(RCC_GetHCLK1ClockFreq(RCC_GetSystemClockFreq())); + break; + } + return usart_frequency; +} + +/** + * @brief Return I2Cx clock frequency + * @param I2CxSource This parameter can be one of the following values: + * @arg @ref LL_RCC_I2C1_CLKSOURCE + * @arg @ref LL_RCC_I2C3_CLKSOURCE (*) + * @note (*) Value not defined for all devices + * @retval I2C clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that HSI oscillator is not ready + */ +uint32_t LL_RCC_GetI2CClockFreq(uint32_t I2CxSource) +{ + uint32_t i2c_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + + /* Check parameter */ + assert_param(IS_LL_RCC_I2C_CLKSOURCE(I2CxSource)); + + if (I2CxSource == LL_RCC_I2C1_CLKSOURCE) + { + /* I2C1 CLK clock frequency */ + switch (LL_RCC_GetI2CClockSource(I2CxSource)) + { + case LL_RCC_I2C1_CLKSOURCE_SYSCLK: /* I2C1 Clock is System Clock */ + i2c_frequency = RCC_GetSystemClockFreq(); + break; + + case LL_RCC_I2C1_CLKSOURCE_HSI: /* I2C1 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady() == 1U) + { + i2c_frequency = HSI_VALUE; + } + break; + + case LL_RCC_I2C1_CLKSOURCE_PCLK1: /* I2C1 Clock is PCLK1 */ + default: + i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLK1ClockFreq(RCC_GetSystemClockFreq())); + break; + } + } +#if defined(I2C3) + else + { + /* I2C3 CLK clock frequency */ + switch (LL_RCC_GetI2CClockSource(I2CxSource)) + { + case LL_RCC_I2C3_CLKSOURCE_SYSCLK: /* I2C3 Clock is System Clock */ + i2c_frequency = RCC_GetSystemClockFreq(); + break; + + case LL_RCC_I2C3_CLKSOURCE_HSI: /* I2C3 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady() == 1U) + { + i2c_frequency = HSI_VALUE; + } + break; + + case LL_RCC_I2C3_CLKSOURCE_PCLK1: /* I2C3 Clock is PCLK1 */ + default: + i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLK1ClockFreq(RCC_GetSystemClockFreq())); + break; + } + } +#endif /* I2C3 */ + + return i2c_frequency; +} + +#if defined(LPUART1) +/** + * @brief Return LPUARTx clock frequency + * @param LPUARTxSource This parameter can be one of the following values: + * @arg @ref LL_RCC_LPUART1_CLKSOURCE + * @retval LPUART clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready + */ +uint32_t LL_RCC_GetLPUARTClockFreq(uint32_t LPUARTxSource) +{ + uint32_t lpuart_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + + /* Check parameter */ + assert_param(IS_LL_RCC_LPUART_CLKSOURCE(LPUARTxSource)); + + /* LPUART1CLK clock frequency */ + switch (LL_RCC_GetLPUARTClockSource(LPUARTxSource)) + { + case LL_RCC_LPUART1_CLKSOURCE_SYSCLK: /* LPUART1 Clock is System Clock */ + lpuart_frequency = RCC_GetSystemClockFreq(); + break; + + case LL_RCC_LPUART1_CLKSOURCE_HSI: /* LPUART1 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady() == 1U) + { + lpuart_frequency = HSI_VALUE; + } + break; + + case LL_RCC_LPUART1_CLKSOURCE_LSE: /* LPUART1 Clock is LSE Osc. */ + if (LL_RCC_LSE_IsReady() == 1U) + { + lpuart_frequency = LSE_VALUE; + } + break; + + case LL_RCC_LPUART1_CLKSOURCE_PCLK1: /* LPUART1 Clock is PCLK1 */ + default: + lpuart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLK1ClockFreq(RCC_GetSystemClockFreq())); + break; + } + + return lpuart_frequency; +} +#endif /* LPUART1 */ + +/** + * @brief Return LPTIMx clock frequency + * @param LPTIMxSource This parameter can be one of the following values: + * @arg @ref LL_RCC_LPTIM1_CLKSOURCE + * @arg @ref LL_RCC_LPTIM2_CLKSOURCE + * @retval LPTIM clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI, LSI or LSE) is not ready + */ +uint32_t LL_RCC_GetLPTIMClockFreq(uint32_t LPTIMxSource) +{ + uint32_t lptim_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + uint32_t temp = LL_RCC_LSI2_IsReady(); + + /* Check parameter */ + assert_param(IS_LL_RCC_LPTIM_CLKSOURCE(LPTIMxSource)); + + if (LPTIMxSource == LL_RCC_LPTIM1_CLKSOURCE) + { + /* LPTIM1CLK clock frequency */ + switch (LL_RCC_GetLPTIMClockSource(LPTIMxSource)) + { + case LL_RCC_LPTIM1_CLKSOURCE_LSI: /* LPTIM1 Clock is LSI Osc. */ + if ((LL_RCC_LSI1_IsReady() == 1UL) || (temp == 1UL)) + { + lptim_frequency = LSI_VALUE; + } + break; + + case LL_RCC_LPTIM1_CLKSOURCE_HSI: /* LPTIM1 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady() == 1U) + { + lptim_frequency = HSI_VALUE; + } + break; + + case LL_RCC_LPTIM1_CLKSOURCE_LSE: /* LPTIM1 Clock is LSE Osc. */ + if (LL_RCC_LSE_IsReady() == 1U) + { + lptim_frequency = LSE_VALUE; + } + break; + + case LL_RCC_LPTIM1_CLKSOURCE_PCLK1: /* LPTIM1 Clock is PCLK1 */ + default: + lptim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLK1ClockFreq(RCC_GetSystemClockFreq())); + break; + } + } + else + { + /* LPTIM2CLK clock frequency */ + switch (LL_RCC_GetLPTIMClockSource(LPTIMxSource)) + { + case LL_RCC_LPTIM2_CLKSOURCE_LSI: /* LPTIM2 Clock is LSI Osc. */ + if ((LL_RCC_LSI1_IsReady() == 1UL) || (temp == 1UL)) + { + lptim_frequency = LSI_VALUE; + } + break; + + case LL_RCC_LPTIM2_CLKSOURCE_HSI: /* LPTIM2 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady() == 1U) + { + lptim_frequency = HSI_VALUE; + } + break; + + case LL_RCC_LPTIM2_CLKSOURCE_LSE: /* LPTIM2 Clock is LSE Osc. */ + if (LL_RCC_LSE_IsReady() == 1U) + { + lptim_frequency = LSE_VALUE; + } + break; + + case LL_RCC_LPTIM2_CLKSOURCE_PCLK1: /* LPTIM2 Clock is PCLK1 */ + default: + lptim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLK1ClockFreq(RCC_GetSystemClockFreq())); + break; + } + } + + return lptim_frequency; +} + +#if defined(SAI1) +/** + * @brief Return SAIx clock frequency + * @param SAIxSource This parameter can be one of the following values: + * @arg @ref LL_RCC_SAI1_CLKSOURCE + * + * @retval SAI clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that PLL is not ready + * - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that external clock is used + */ +uint32_t LL_RCC_GetSAIClockFreq(uint32_t SAIxSource) +{ + uint32_t sai_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + + /* Check parameter */ + assert_param(IS_LL_RCC_SAI_CLKSOURCE(SAIxSource)); + + switch (LL_RCC_GetSAIClockSource(SAIxSource)) + { + case LL_RCC_SAI1_CLKSOURCE_HSI: /* HSI clock used as SAI1 clock source */ + if (LL_RCC_HSI_IsReady() == 1U) + { + sai_frequency = HSI_VALUE; + } + break; + + case LL_RCC_SAI1_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as SAI1 clock source */ + if (LL_RCC_PLLSAI1_IsReady() == 1U) + { + if (LL_RCC_PLLSAI1_IsEnabledDomain_SAI() == 1U) + { + sai_frequency = RCC_PLLSAI1_GetFreqDomain_SAI(); + } + } + break; + + case LL_RCC_SAI1_CLKSOURCE_PLL: /* PLL clock used as SAI1 clock source */ + if (LL_RCC_PLL_IsReady() == 1U) + { + if (LL_RCC_PLL_IsEnabledDomain_SAI() == 1U) + { + sai_frequency = RCC_PLL_GetFreqDomain_SAI(); + } + } + break; + + case LL_RCC_SAI1_CLKSOURCE_PIN: /* External input clock used as SAI1 clock source */ + default: + sai_frequency = LL_RCC_PERIPH_FREQUENCY_NA; + break; + } + return sai_frequency; +} +#endif /* SAI1 */ + +/** + * @brief Return CLK48x clock frequency + * @param CLK48xSource This parameter can be one of the following values: + * @arg @ref LL_RCC_CLK48_CLKSOURCE + * @retval USB clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (MSI or HSI48) or PLLs (PLL or PLLSAI1) + * is not ready + */ +uint32_t LL_RCC_GetCLK48ClockFreq(uint32_t CLK48xSource) +{ + uint32_t clk48_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + + /* Check parameter */ + assert_param(IS_LL_RCC_CLK48_CLKSOURCE(CLK48xSource)); + + /* CLK48CLK clock frequency */ + switch (LL_RCC_GetCLK48ClockSource(CLK48xSource)) + { +#if defined(SAI1) + case LL_RCC_CLK48_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as CLK48 clock source */ + if (LL_RCC_PLLSAI1_IsReady() == 1U) + { + if (LL_RCC_PLLSAI1_IsEnabledDomain_48M() == 1U) + { + clk48_frequency = RCC_PLLSAI1_GetFreqDomain_48M(); + } + } + break; +#endif /* SAI1 */ + + case LL_RCC_CLK48_CLKSOURCE_PLL: /* PLL clock used as CLK48 clock source */ + if (LL_RCC_PLL_IsReady() == 1U) + { + if (LL_RCC_PLL_IsEnabledDomain_48M() == 1U) + { + clk48_frequency = RCC_PLL_GetFreqDomain_48M(); + } + } + break; + + case LL_RCC_CLK48_CLKSOURCE_MSI: /* MSI clock used as CLK48 clock source */ + if (LL_RCC_MSI_IsReady() == 1U) + { + clk48_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + } + break; + +#if defined(RCC_HSI48_SUPPORT) + case LL_RCC_CLK48_CLKSOURCE_HSI48: /* HSI48 clock used as CLK48 clock source */ + default: + if (LL_RCC_HSI48_IsReady() == 1U) + { + clk48_frequency = HSI48_VALUE; + } + break; +#else + default: + /* Nothing to do */ + break; +#endif /* RCC_HSI48_SUPPORT */ + } + + return clk48_frequency; +} + +#if defined(USB) +/** + * @brief Return USBx clock frequency + * @param USBxSource This parameter can be one of the following values: + * @arg @ref LL_RCC_CLK48_CLKSOURCE + * @retval USB clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (MSI or HSI48) or PLLs (PLL or PLLSAI1) + * is not ready + */ +uint32_t LL_RCC_GetUSBClockFreq(uint32_t USBxSource) +{ + return LL_RCC_GetCLK48ClockFreq(USBxSource); +} +#endif /* USB */ + +/** + * @brief Return RNGx clock frequency + * @param RNGxSource This parameter can be one of the following values: + * @arg @ref LL_RCC_RNG_CLKSOURCE + * @retval RNG clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (MSI or HSI48) or PLLs (PLL or PLLSAI1) + * is not ready + */ +uint32_t LL_RCC_GetRNGClockFreq(uint32_t RNGxSource) +{ + uint32_t rng_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + uint32_t rngClockSource = LL_RCC_GetRNGClockSource(RNGxSource); + + /* Check parameter */ + assert_param(IS_LL_RCC_RNG_CLKSOURCE(RNGxSource)); + + /* RNGCLK clock frequency */ + if (rngClockSource == LL_RCC_RNG_CLKSOURCE_LSI) /* LSI clock used as RNG clock source */ + { + const uint32_t temp_lsi1Status = LL_RCC_LSI1_IsReady(); + const uint32_t temp_lsi2Status = LL_RCC_LSI2_IsReady(); + if ((temp_lsi1Status == 1U) || (temp_lsi2Status == 1U)) + { + rng_frequency = LSI_VALUE; + } + } + else if (rngClockSource == LL_RCC_RNG_CLKSOURCE_LSE) /* LSE clock used as RNG clock source */ + { + if (LL_RCC_LSE_IsReady() == 1U) + { + rng_frequency = LSE_VALUE; + } + } + else /* CLK48 clock used as RNG clock source */ + { + /* Systematic Div by 3 */ + rng_frequency = LL_RCC_GetCLK48ClockFreq(LL_RCC_CLK48_CLKSOURCE) / 3U; + } + return rng_frequency; +} + +/** + * @brief Return ADCx clock frequency + * @param ADCxSource This parameter can be one of the following values: + * @arg @ref LL_RCC_ADC_CLKSOURCE + * @retval ADC clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (MSI) or PLL is not ready + * - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected + */ +uint32_t LL_RCC_GetADCClockFreq(uint32_t ADCxSource) +{ + uint32_t adc_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + + /* Check parameter */ + assert_param(IS_LL_RCC_ADC_CLKSOURCE(ADCxSource)); + + /* ADCCLK clock frequency */ + switch (LL_RCC_GetADCClockSource(ADCxSource)) + { +#if defined(SAI1) + case LL_RCC_ADC_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as ADC clock source */ + if (LL_RCC_PLLSAI1_IsReady() == 1U) + { + if (LL_RCC_PLLSAI1_IsEnabledDomain_ADC() == 1U) + { + adc_frequency = RCC_PLLSAI1_GetFreqDomain_ADC(); + } + } + break; +#endif /* SAI1 */ + + case LL_RCC_ADC_CLKSOURCE_SYSCLK: /* SYSCLK clock used as ADC clock source */ + adc_frequency = RCC_GetSystemClockFreq(); + break; + + case LL_RCC_ADC_CLKSOURCE_PLL: /* PLL clock used as ADC clock source */ + if (LL_RCC_PLL_IsReady() == 1U) + { + if (LL_RCC_PLL_IsEnabledDomain_ADC() == 1U) + { + adc_frequency = RCC_PLL_GetFreqDomain_ADC(); + } + } + break; + + case LL_RCC_ADC_CLKSOURCE_NONE: /* No clock used as ADC clock source */ + default: + adc_frequency = LL_RCC_PERIPH_FREQUENCY_NA; + break; + } + + return adc_frequency; +} + +/** + * @brief Return RTC & LCD clock frequency + * @retval RTC clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillators (LSI, LSE or HSE) are not ready + * - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected + */ +uint32_t LL_RCC_GetRTCClockFreq(void) +{ + uint32_t rtc_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + uint32_t temp = LL_RCC_LSI2_IsReady(); + + /* RTCCLK clock frequency */ + switch (LL_RCC_GetRTCClockSource()) + { + case LL_RCC_RTC_CLKSOURCE_LSE: /* LSE clock used as RTC clock source */ + if (LL_RCC_LSE_IsReady() == 1U) + { + rtc_frequency = LSE_VALUE; + } + break; + + case LL_RCC_RTC_CLKSOURCE_LSI: /* LSI clock used as RTC clock source */ + + if ((LL_RCC_LSI1_IsReady() == 1UL) || (temp == 1UL)) + { + rtc_frequency = LSI_VALUE; + } + break; + + case LL_RCC_RTC_CLKSOURCE_HSE_DIV32: /* HSE clock used as ADC clock source */ + rtc_frequency = HSE_VALUE / 32U; + break; + + case LL_RCC_RTC_CLKSOURCE_NONE: /* No clock used as RTC clock source */ + default: + rtc_frequency = LL_RCC_PERIPH_FREQUENCY_NA; + break; + } + + return rtc_frequency; +} + +/** + * @brief Return RF Wakeup clock frequency + * @retval RFWKP clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillators (LSI, LSE or HSE) are not ready + * - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected + */ +uint32_t LL_RCC_GetRFWKPClockFreq(void) +{ + uint32_t rfwkp_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + + /* RTCCLK clock frequency */ + switch (LL_RCC_GetRFWKPClockSource()) + { + case LL_RCC_RFWKP_CLKSOURCE_LSE: /* LSE clock used as RF Wakeup clock source */ + if (LL_RCC_LSE_IsReady() == 1U) + { + rfwkp_frequency = LSE_VALUE; + } + break; + + case LL_RCC_RFWKP_CLKSOURCE_HSE_DIV1024: /* HSE clock used as RF Wakeup clock source */ + rfwkp_frequency = HSE_VALUE / 1024U; + break; + + case LL_RCC_RFWKP_CLKSOURCE_NONE: /* No clock used as RF Wakeup clock source */ + default: + rfwkp_frequency = LL_RCC_PERIPH_FREQUENCY_NA; + break; + } + + return rfwkp_frequency; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup RCC_LL_Private_Functions + * @{ + */ + +/** + * @brief Return SYSTEM clock (SYSCLK) frequency + * @retval SYSTEM clock frequency (in Hz) + */ +static uint32_t RCC_GetSystemClockFreq(void) +{ + uint32_t frequency; + + /* Get SYSCLK source -------------------------------------------------------*/ + switch (LL_RCC_GetSysClkSource()) + { + case LL_RCC_SYS_CLKSOURCE_STATUS_MSI: /* MSI used as system clock source */ + frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + + case LL_RCC_SYS_CLKSOURCE_STATUS_HSI: /* HSI used as system clock source */ + frequency = HSI_VALUE; + break; + + case LL_RCC_SYS_CLKSOURCE_STATUS_HSE: /* HSE used as system clock source */ + if (LL_RCC_HSE_IsEnabledDiv2() == 1U) + { + frequency = HSE_VALUE / 2U; + } + else + { + frequency = HSE_VALUE; + } + break; + + case LL_RCC_SYS_CLKSOURCE_STATUS_PLL: /* PLL used as system clock source */ + frequency = RCC_PLL_GetFreqDomain_SYS(); + break; + + default: + frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + } + + return frequency; +} + +/** + * @brief Return HCLK1 clock frequency + * @param SYSCLK_Frequency SYSCLK clock frequency + * @retval HCLK1 clock frequency (in Hz) + */ +static uint32_t RCC_GetHCLK1ClockFreq(uint32_t SYSCLK_Frequency) +{ + /* HCLK clock frequency */ + return __LL_RCC_CALC_HCLK1_FREQ(SYSCLK_Frequency, LL_RCC_GetAHBPrescaler()); +} + +/** + * @brief Return HCLK2 clock frequency + * @param SYSCLK_Frequency SYSCLK clock frequency + * @retval HCLK2 clock frequency (in Hz) + */ +static uint32_t RCC_GetHCLK2ClockFreq(uint32_t SYSCLK_Frequency) +{ + /* HCLK clock frequency */ + return __LL_RCC_CALC_HCLK2_FREQ(SYSCLK_Frequency, LL_C2_RCC_GetAHBPrescaler()); +} + +/** + * @brief Return HCLK clock frequency + * @param SYSCLK_Frequency SYSCLK clock frequency + * @retval HCLK4 clock frequency (in Hz) + */ +static uint32_t RCC_GetHCLK4ClockFreq(uint32_t SYSCLK_Frequency) +{ + /* HCLK clock frequency */ + return __LL_RCC_CALC_HCLK4_FREQ(SYSCLK_Frequency, LL_RCC_GetAHB4Prescaler()); +} + +/** + * @brief Return HCLK5 clock frequency + * @retval HCLK5 clock frequency (in Hz) + */ +static uint32_t RCC_GetHCLK5ClockFreq(void) +{ + uint32_t frequency; + + /* Get SYSCLK source -------------------------------------------------------*/ + switch (LL_RCC_GetRFClockSource()) + { + case LL_RCC_RF_CLKSOURCE_HSI: /* HSI used as system clock source */ + frequency = HSI_VALUE; + break; + + case LL_RCC_RF_CLKSOURCE_HSE_DIV2: /* HSE Div2 used as system clock source */ + frequency = HSE_VALUE / 2U; + break; + + default: + frequency = HSI_VALUE; + break; + } + + return frequency; +} + +/** + * @brief Return PCLK1 clock frequency + * @param HCLK_Frequency HCLK clock frequency + * @retval PCLK1 clock frequency (in Hz) + */ +static uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency) +{ + /* PCLK1 clock frequency */ + return __LL_RCC_CALC_PCLK1_FREQ(HCLK_Frequency, LL_RCC_GetAPB1Prescaler()); +} + +/** + * @brief Return PCLK2 clock frequency + * @param HCLK_Frequency HCLK clock frequency + * @retval PCLK2 clock frequency (in Hz) + */ +static uint32_t RCC_GetPCLK2ClockFreq(uint32_t HCLK_Frequency) +{ + /* PCLK2 clock frequency */ + return __LL_RCC_CALC_PCLK2_FREQ(HCLK_Frequency, LL_RCC_GetAPB2Prescaler()); +} + +/** + * @brief Return PLL clock (PLLRCLK) frequency used for system domain + * @retval PLLRCLK clock frequency (in Hz) + */ +static uint32_t RCC_PLL_GetFreqDomain_SYS(void) +{ + uint32_t pllinputfreq; + uint32_t pllsource; + + /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLN + SYSCLK = PLL_VCO / PLLR + */ + pllsource = LL_RCC_PLL_GetMainSource(); + + switch (pllsource) + { + case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */ + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + + case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ + pllinputfreq = HSI_VALUE; + break; + + case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ + if (LL_RCC_HSE_IsEnabledDiv2() == 1U) + { + pllinputfreq = HSE_VALUE / 2U; + } + else + { + pllinputfreq = HSE_VALUE; + } + break; + + default: + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + } + return __LL_RCC_CALC_PLLCLK_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), + LL_RCC_PLL_GetN(), LL_RCC_PLL_GetR()); +} + +#if defined(SAI1) +/** + * @brief Return PLL clock (PLLPCLK) frequency used for SAI domain + * @retval PLLPCLK clock frequency (in Hz) + */ +static uint32_t RCC_PLL_GetFreqDomain_SAI(void) +{ + uint32_t pllinputfreq; + uint32_t pllsource; + + /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI Value / PLLM) * PLLN + SAI Domain clock = PLL_VCO / PLLP + */ + pllsource = LL_RCC_PLL_GetMainSource(); + + switch (pllsource) + { + case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */ + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + + case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ + pllinputfreq = HSI_VALUE; + break; + + case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ + if (LL_RCC_HSE_IsEnabledDiv2() == 1U) + { + pllinputfreq = HSE_VALUE / 2U; + } + else + { + pllinputfreq = HSE_VALUE; + } + break; + + default: + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + } + return __LL_RCC_CALC_PLLCLK_SAI_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), + LL_RCC_PLL_GetN(), LL_RCC_PLL_GetP()); +} +#endif /* SAI1 */ + +/** + * @brief Return PLL clock (PLLPCLK) frequency used for ADC domain + * @retval PLLPCLK clock frequency (in Hz) + */ +static uint32_t RCC_PLL_GetFreqDomain_ADC(void) +{ + uint32_t pllinputfreq; + uint32_t pllsource; + + /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI Value / PLLM) * PLLN + SAI Domain clock = PLL_VCO / PLLP + */ + pllsource = LL_RCC_PLL_GetMainSource(); + + switch (pllsource) + { + case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */ + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + + case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ + pllinputfreq = HSI_VALUE; + break; + + case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ + if (LL_RCC_HSE_IsEnabledDiv2() == 1U) + { + pllinputfreq = HSE_VALUE / 2U; + } + else + { + pllinputfreq = HSE_VALUE; + } + + break; + + default: + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + } + return __LL_RCC_CALC_PLLCLK_ADC_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), + LL_RCC_PLL_GetN(), LL_RCC_PLL_GetP()); +} + +/** + * @brief Return PLL clock (PLLQCLK) frequency used for 48 MHz domain + * @retval PLLQCLK clock frequency (in Hz) + */ +static uint32_t RCC_PLL_GetFreqDomain_48M(void) +{ + uint32_t pllinputfreq; + uint32_t pllsource; + + /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLN + 48M Domain clock = PLL_VCO / PLLQ + */ + pllsource = LL_RCC_PLL_GetMainSource(); + + switch (pllsource) + { + case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */ + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + + case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ + pllinputfreq = HSI_VALUE; + break; + + case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ + if (LL_RCC_HSE_IsEnabledDiv2() == 1U) + { + pllinputfreq = HSE_VALUE / 2U; + } + else + { + pllinputfreq = HSE_VALUE; + } + + break; + + default: + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + } + return __LL_RCC_CALC_PLLCLK_48M_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), + LL_RCC_PLL_GetN(), LL_RCC_PLL_GetQ()); +} + +#if defined(SAI1) +/** + * @brief Return PLLSAI1 clock (PLLSAI1PCLK) frequency used for SAI domain + * @retval PLLSAI1PCLK clock frequency (in Hz) + */ +static uint32_t RCC_PLLSAI1_GetFreqDomain_SAI(void) +{ + uint32_t pllinputfreq; + uint32_t pllsource; + + /* PLLSAI1_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLSAI1N */ + /* SAI Domain clock = PLLSAI1_VCO / PLLSAI1P */ + pllsource = LL_RCC_PLL_GetMainSource(); + + switch (pllsource) + { + case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLLSAI1 clock source */ + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + + case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLLSAI1 clock source */ + pllinputfreq = HSI_VALUE; + break; + + case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLLSAI1 clock source */ + if (LL_RCC_HSE_IsEnabledDiv2() == 1U) + { + pllinputfreq = HSE_VALUE / 2U; + } + else + { + pllinputfreq = HSE_VALUE; + } + + break; + + default: + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + } + return __LL_RCC_CALC_PLLSAI1_SAI_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), + LL_RCC_PLLSAI1_GetN(), LL_RCC_PLLSAI1_GetP()); +} + +/** + * @brief Return PLLSAI1 clock (PLLSAI1QCLK) frequency used for 48Mhz domain + * @retval PLLSAI1QCLK clock frequency (in Hz) + */ +static uint32_t RCC_PLLSAI1_GetFreqDomain_48M(void) +{ + uint32_t pllinputfreq; + uint32_t pllsource; + + /* PLLSAI1_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLSAI1N */ + /* 48M Domain clock = PLLSAI1_VCO / PLLSAI1Q */ + pllsource = LL_RCC_PLL_GetMainSource(); + + switch (pllsource) + { + case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLLSAI1 clock source */ + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + + case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLLSAI1 clock source */ + pllinputfreq = HSI_VALUE; + break; + + case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLLSAI1 clock source */ + if (LL_RCC_HSE_IsEnabledDiv2() == 1U) + { + pllinputfreq = HSE_VALUE / 2U; + } + else + { + pllinputfreq = HSE_VALUE; + } + break; + + default: + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + } + return __LL_RCC_CALC_PLLSAI1_48M_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), + LL_RCC_PLLSAI1_GetN(), LL_RCC_PLLSAI1_GetQ()); +} + +/** + * @brief Return PLLSAI1 clock (PLLSAI1RCLK) frequency used for ADC domain + * @retval PLLSAI1RCLK clock frequency (in Hz) + */ +static uint32_t RCC_PLLSAI1_GetFreqDomain_ADC(void) +{ + uint32_t pllinputfreq; + uint32_t pllsource; + + /* PLLSAI1_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLSAI1N */ + /* 48M Domain clock = PLLSAI1_VCO / PLLSAI1R */ + pllsource = LL_RCC_PLL_GetMainSource(); + + switch (pllsource) + { + case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLLSAI1 clock source */ + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + + case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLLSAI1 clock source */ + pllinputfreq = HSI_VALUE; + break; + + case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLLSAI1 clock source */ + if (LL_RCC_HSE_IsEnabledDiv2() == 1U) + { + pllinputfreq = HSE_VALUE / 2U; + } + else + { + pllinputfreq = HSE_VALUE; + } + break; + + default: + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); + break; + } + return __LL_RCC_CALC_PLLSAI1_ADC_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), + LL_RCC_PLLSAI1_GetN(), LL_RCC_PLLSAI1_GetR()); +} +#endif /* SAI1 */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* RCC */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ |
